15 research outputs found

    Nonlocal Quantum Gravity and the Size of the Universe

    Full text link
    Motivated by the conjecture that the cosmological constant problem is solved by strong quantum effects in the infrared we use the exact flow equation of Quantum Einstein Gravity to determine the renormalization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a general nonlinear function Fk(V)F_k(V) of the Euclidean spacetime volume VV. For the V+VlnVV + V \ln V-invariant the renormalization group running enormously suppresses the value of the renormalized curvature which results from Planck-size parameters specified at the Planck scale. One obtains very large, i.e., almost flat universes without finetuning the cosmological constant. A critical infrared fixed point is found where gravity is scale invariant.Comment: 6 pages, 1 figure, contribution to the proceedings of the 36th International Symposium Ahrenshoop, Berlin, August 26-30, 200

    Ghost wave-function renormalization in Asymptotically Safe Quantum Gravity

    Full text link
    Motivated by Weinberg's asymptotic safety scenario, we investigate the gravitational renormalization group flow in the Einstein-Hilbert truncation supplemented by the wave-function renormalization of the ghost fields. The latter induces non-trivial corrections to the beta-functions for Newton's constant and the cosmological constant. The resulting ghost-improved phase diagram is investigated in detail. In particular, we find a non-trivial ultraviolet fixed point in agreement with the asymptotic safety conjecture, which also survives in the presence of extra dimensions. In four dimensions the ghost anomalous dimension at the fixed point is ηc=1.8\eta_c^* = -1.8, supporting space-time being effectively two-dimensional at short distances.Comment: 23 pages, 4 figure

    From Big Bang to Asymptotic de Sitter: Complete Cosmologies in a Quantum Gravity Framework

    Full text link
    Using the Einstein-Hilbert approximation of asymptotically safe quantum gravity we present a consistent renormalization group based framework for the inclusion of quantum gravitational effects into the cosmological field equations. Relating the renormalization group scale to cosmological time via a dynamical cutoff identification this framework applies to all stages of the cosmological evolution. The very early universe is found to contain a period of ``oscillatory inflation'' with an infinite sequence of time intervals during which the expansion alternates between acceleration and deceleration. For asymptotically late times we identify a mechanism which prevents the universe from leaving the domain of validity of the Einstein-Hilbert approximation and obtain a classical de Sitter era.Comment: 47 pages, 17 figure

    Black holes within asymptotic safety

    Get PDF
    Contains fulltext : 127919.pdf (preprint version ) (Open Access
    corecore