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Abstract

Black holes are probably among the most fascinating objects populating our universe. Their

characteristic features found within general relativity, encompassing spacetime singularities, event

horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas.

We review the status of black holes within a particular proposal for quantum gravity, Weinberg’s

asymptotic safety program. Starting from a brief survey of the effective average action and

scale setting procedures, an improved quantum picture of the black hole is developed. The

Schwarzschild black hole and its generalizations including angular momenta, higher-derivative

corrections and the implications of extra dimensions are discussed in detail. In addition, the

quantum singularity emerging for the inclusion of a cosmological constant is elucidated and linked

to the phenomenon of a dynamical dimensional reduction of spacetime.
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1 Introduction

Black holes [1, 2, 3, 4] are fascinating objects, which are in the focus of many scientific communities

including observational astrophysicists, general relativists, and theoreticians working on quantum

gravity. By definition, a black hole is a region of spacetime from which gravity prevents anything,

including light, from escaping. From the observational side there is hardly any doubt that a

supermassive black hole with a mass of order 2× 106 solar masses sits in the center of our galaxy

[5]. Moreover, there is an active search for primordial black holes which could have formed in

the very early universe and enter into the final stage of their lifetime today [6]. Microscopic

black holes have been advocated as candidates for massive astrophysical compact halo objects

(MACHOs) that could account for the apparent presence of dark matter. These experimental

searches go hand in hand with the effort of the theoretical physics community to develop the

theoretical understanding of these objects, since they provide an important laboratory for testing

ideas related to quantum gravity. The goal of the present article is to provide a status report

summarizing the understanding of black hole physics within the gravitational asymptotic safety

program also called Quantum Einstein Gravity (QEG) [7, 8, 9, 10, 11]. For similar accounts in

string theory and loop quantum gravity we refer to Ref. [12] and Ref. [13], respectively.

In classical general relativity black holes appear as vacuum solutions of Einstein’s equations.

The simplest black hole solution is described by the Schwarzschild metric

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2dΩ2
2 (1.1)
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with dΩ2
2 denoting the line-element of the two-sphere and the radial function

f(r) = 1− 2GM

r
. (1.2)

By Birkhoff’s theorem, the Schwarzschild metric constitutes the unique spherically symmetric

vacuum solution. Besides depending on Newton’s constant G the solution is completely charac-

terized by the mass M of the black hole. Later on this solution was systematically generalized to

include angular momentum J (Kerr metric), electric charges Q (Reissner-Nordström metric), and

a combination of the two (Kerr-Newman metric). Generalizations to spacetimes with more and

less than four dimensions have led to the discovery of the BTZ black hole, Ref. [14], and revealed

the breakdown of the uniqueness theorems once the spacetime includes extra dimensions [15].

As a characteristic feature, classical black holes possess a gravitational singularity where

curvature invariants like the square of the Riemann tensor diverge. Typically, these singularities

are shielded by an event horizon.2 This feature can be formalized in terms of the cosmic censorship

hypothesis stating that the gravitational singularity is hidden from an observer at infinity. The

occurrence of singularities in general relativity is often interpreted as a signal that the theory is

incomplete and a consistent description requires a treatment within a (hitherto elusive) quantum

theory of gravity. Vice versa, the capability of resolving the classical black hole singularity is

often advocated as a benchmark test for the viability of the quantum theory.

The first milestone towards a quantum treatment of black holes was the discovery that black

holes emit Hawking radiation and are thus not entirely black [16]. One way to obtain this result

is by quantizing a scalar field in a black hole background, leading to the prediction that the

black hole emits black body radiation with temperature inversely proportional to its mass. More

generally, given a black hole or cosmological horizon situated at rH the temperature TH of the

black body radiation emitted by the horizon is

TH =
1

4π
∂rf(r)|r=rH

. (1.3)

Heuristically, the origin of this thermal radiation can be understood in terms of pair production of

particles close to the event horizon. One partner crosses the horizon and falls into the singularity,

while the other becomes a real particle escaping to infinity where it is detected as black hole

radiation. The particle falling towards the singularity thereby generates a negative energy flow

into the black hole so that its mass decreases. This constituted an important step towards

developing the thermodynamics of black holes, which associates an entropy SBH to the event

horizon. Semi-classically, SBH is given by the Bekenstein-Hawking area law,

SBH =
A

4G
, (1.4)

where A is the area of the event horizon. Subleading corrections to this formula have been

computed in many quantum gravity proposals [17].

2A solution of Einstein’s equations giving rise to a naked singularity (i.e., a singularity not shielded by an event

horizon) is the Kerr black hole with J > GM2.
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In this review, we will focus on the role of black holes within a specific proposal for a quantum

theory of gravity, the gravitational asymptotic safety program [7, 8, 9, 10, 11]. This scenario, first

advocated by Weinberg[18], and inaugurated by the introduction of functional renormalization

group (RG) methods by Reuter in Ref. [19], proposes that gravity is a nonperturbatively renor-

malizable quantum field theory. The key ingredient of the scenario is a non-Gaussian fixed point

(NGFP) of the theory’s RG flow which controls the scale dependence of the coupling constants

in the ultraviolet (UV). The running of the coupling constants is thus special in its UV limit

in the sense that all dimensionless combinations remain finite. This suffices to render physical

quantities safe from unphysical divergences. Provided that the set of RG trajectories approaching

the fixed point in the UV is finite-dimensional, i.e., parameterized by a finite number of “rele-

vant” couplings, asymptotic safety is as predictive as a standard perturbatively renormalizable

quantum field theory. While a rigorous existence proof for the NGFP is still lacking, there is by

now substantial evidence supporting the viability of the asymptotic safety scenario [11].

The key ingredient in developing the asymptotic safety program is the gravitational effective

average action Γk [19]. By construction, Γk contains effective vertices which include the effect

of the quantum fluctuations with momenta p2 > k2. In this sense Γk provides an effective

description of physics at the momentum scale k2 ≈ p2. This feature has been essential for

assessing the phenomenological consequences of asymptotic safety. Starting from the pioneering

papers by Bonanno and Reuter, Refs. [20, 21], the quantum properties of black holes arising from

asymptotic safety have been explored systematically by constructing RG improved solutions.

Following up on these initial works, the dynamics of black hole evaporation based on the Vaidya-

metric has been studied in Ref. [22], while the RG improved Kerr metric has been constructed

in [23, 24]. In [25] the results of [21] have been reanalyzed from a thermodynamics perspective

and the role of higher derivative terms in the effective average action has been explored in [26].

Most recently RG improvements including scale-dependent surface terms have been carried out by

Becker and Reuter, Refs. [27, 28], and an equation highlighting the state-counting properties of Γk

has been proposed in Ref. [27]. Moreover, Refs. [29, 30] established that, rather counter-intuitively,

the cosmological constant plays a crucial role in determining the short distance physics of the

quantum black holes. Further aspects of RG improved black hole geometries have been explored

in Refs. [31, 32, 33, 34, 35]. 3 In general, these works established that quantum corrections in

the vicinity of the nontrivial UV fixed points lead to drastic modifications of the classical picture

at short distances or high momenta while the long-distance properties of the improved black hole

spacetime essentially agree with classical general relativity.

The rest of this review is organized as follows. In section 2 we introduce the properties

of the effective average action together with the most common scale setting procedures. This

background provides the starting point for exploring physics applications of asymptotic safety.

Sections 3 and 4 review the features of the renormalization group improved black hole solutions

3Along similar lines the study of RG-improved cosmologies has been initiated in Refs. [36, 37], recently reviewed

in [38], while RG-improved diffusion processes characterizing the microscopic structure of the asymptotically safe

quantum spacetime have been investigated in [39, 40, 41, 42].
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in asymptotically flat space and in the presence of a cosmological constant, respectively. The new

material contained in section 4.3 links the latter to the dynamical dimensional reduction of the

asymptotically safe quantum spacetime [43, 44, 39, 40]. A brief summary of further developments

is given in section 5 and we conclude with an outlook in section 6.

2 The effective average action and scale setting procedures

In this section, we introduce the basic ingredients underlying the quantum description of black

holes within asymptotic safety.

2.1 A primer to asymptotic safety

Before being able to discuss the quantum nature of a black hole, one needs to specify the input

from the “fundamental theory” in which the black hole will be studied. In the asymptotic safety

program this input is provided by the gravitational effective average action Γk, Ref. [19], a Wilson

type effective action which provides an effective description of physics at the momentum scale

k. More formally, the effective vertices obtained from Γk already contain information about loop

corrections where quantum fluctuations with momenta p2 ≥ k2 have been integrated out. In the

spirit of the effective action, the quantum properties of the system can then be studied within a

tree-level analysis based on Γk.

The key property of Γk is that its k-dependence is governed by the formally exact functional

renormalization group equation (FRGE)

∂kΓk[Φ, Φ̄] =
1

2
Tr

[(
Γ
(2)
k +Rk

)−1
∂kRk

]
. (2.1)

Here Γ
(2)
k is the second functional derivative of Γk with respect to the quantum fields Φ at fixed

background fields Φ̄. The mode suppression operator Rk[Φ̄] provides a k-dependent mass-term

for fluctuations with covariant momenta p2 ≪ k2 and vanishes for p2 ≫ k2. Its appearance in the

numerator and denominator renders the trace (Tr) both infrared and UV finite with the main

contribution coming from quantum fluctuations with momentum p2 ≃ k2. The FRGE is an exact

equation without any perturbative approximations. Given an initial condition it determines Γk

for all scales uniquely. Its solutions interpolate between the bare (microscopic) action at k → ∞
and the effective action Γ[Φ] = Γk=0

[
Φ, Φ̄ = Φ

]
at k → 0, provided that these limits exist (also

see [45] for a more detailed discussion).

While obtaining exact solutions of the FRGE is notoriously hard, the flow equation permits

several approximation schemes. One is, of course, perturbation theory, i.e., the expansion of

the FRGE in a small coupling constant or in ~. The detailed connection between RG flows

obtained from the FRGE and the MSbar scheme has recently been worked out [46]. The main

strength of the FRGE is, however, that it also allows to extract non-perturbative information
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in a rather systematic way.4 Typical strategies involve a derivative expansion, truncating Γk to

the interaction operators with the lowest mass dimension, or a vertex expansion. Over the years,

these techniques have provided substantial insights on the structure of the gravitational RG flow,

in particular supporting the existence of a non-trivial RG fixed point suitable for Weinberg’s

Asymptotic Safety scenario (see Refs. [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] for a

selective list of original works). Moreover, it has been demonstrated that the RG flow emanating

from this NGFP can continuously be connected to a classical regime where general relativity

provides a good approximation for Γk over a wide range of momentum scales[50, 61, 41, 62].

The Einstein-Hilbert truncation

The simplest non-perturbative computation, called the single-metric Einstein-Hilbert truncation,

approximates the gravitational part of Γk by the Euclidean Einstein-Hilbert action

Γgrav
k [g] =

1

16πGk

∫
ddx

√
g [−R+ 2Λk] , (2.2)

supplemented by standard gauge-fixing and ghost terms. Substituting this ansatz into the FRGE

(2.1) and projecting the flow onto the volume and curvature terms contained in the ansatz allows

to read off the beta functions governing the scale dependence of Newton’s constant Gk and the

cosmological constant Λk. The result is conveniently expressed in terms of the dimensionless

coupling constants

gk = Gk k
d−2 , λk = Λk k

−2 , (2.3)

and has first been derived in Ref. [19]

k∂kgk = βg(gk, λk) , k∂kλk = βλ(gk, λk) , (2.4)

where

βλ(g, λ) = (ηN − 2)λ+ 1
2 (4π)

1−d/2 g

×
[
2d(d+ 1)Φ1

d/2(−2λ)− 8dΦ1
d/2(0)− d(d + 1)ηN Φ̃1

d/2(−2λ)
]
,

βg(g, λ) = (d− 2 + ηN )g .

(2.5)

Here the anomalous dimension of Newton’s constant ηN is given by

ηN (g, λ) =
gB1(λ)

1− gB2(λ)
(2.6)

with the following functions of the dimensionless cosmological constant:

B1(λ) ≡ 1
3 (4π)

1−d/2
[
d(d + 1)Φ1

d/2−1(−2λ)− 6d(d − 1)Φ2
d/2(−2λ)

− 4dΦ1
d/2−1(0)− 24Φ2

d/2(0)
]
,

B2(λ) ≡ − 1
6(4π)

1−d/2
[
d(d + 1)Φ̃1

d/2−1(−2λ)− 6d(d − 1)Φ̃2
d/2(−2λ)

]
.

(2.7)

4Here “non-perturbative” should be understood as an approximation that does not resort to an expansion in a

small parameter.

6



Type IIIaType Ia

Type IIa

Type Ib Type IIIb

-0.2 -0.1 0.1 0.2 0.3 0.4 0.5
Λ

-0.5

0.5

1.0

g

Figure 1: Phase diagram obtained from integrating the beta functions of the Einstein-Hilbert

truncation (2.4) evaluated with the optimized regulator (2.8). The arrows point in the direction

of increasing coarse-graining, i.e. of decreasing k. In the shaded region the dimensionful couplings

Gk and Λk become scale-independent, so that classical general relativity emerges dynamically in

the IR[50].

The threshold functions Φp
n(w) and Φ̃p

n(w) encode the dependence of the beta functions on the

coarse-graining operator Rk. For practical computation, it is necessary to specify Rk. A conve-

nient choice is the optimized cutoff, Ref. [63], for which the integrals appearing in the threshold

functions can be carried out analytically

Φopt;p
n (w) =

1

Γ(n+ 1)

1

(1 + w)p
, Φ̃opt;p

n (w) =
1

Γ(n+ 2)

1

(1 + w)p
. (2.8)

The system (2.4) constitutes a two-dimensional projection of the RG flow. Inspecting (2.6), the

anomalous dimension receives contributions from arbitrary powers of Newtons constant. In this

sense the result goes beyond a perturbative loop-expansion in G.

The scale dependence of gk, λk can be obtained by integrating the system (2.4). For d = 4

and the optimized cutoff, the resulting phase portrait is shown in Fig. 1. For positive Newton’s

constant the flow it is dominated by the interplay of the Gaussian Fixed Point (GFP) situated

in the origin (g∗ = 0, λ∗ = 0) and the NGFP at

λ∗ = 0.193 , g∗ = 0.707 , g∗λ∗ = 0.137 . (2.9)

Linearizing the flow around the NGFP, the eigenvalues of the stability matrix Bij ≡ ∂gjβgi |g=g∗

reveals that the NGFP is UV attractive for both gk, λk. Its stability coefficients, defined as minus

the eigenvalues of Bij are

θ1,2 = 1.475 ± 3.043i . (2.10)

Notably, the existence and the stability properties of this NGFP are robust with respect to

changing the gauge-fixing conditions or the shape of Rk, supporting the validity of the asymptotic

safety scenario.
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The NGFP acts as an UV attractor for all RG trajectories shown in the upper half-plane.

Thus it governs the behavior of gravity at high energies and provides its UV-completion. Since

the dimensionless couplings approach constant values, the NGFP also fixes the scaling behavior

of the dimensionful Newton’s constant and cosmological constant at high energies

lim
k→∞

Gk = g∗ k
−2 , lim

k→∞
Λk = λ∗ k

2 . (2.11)

Following the RG flow towards the IR there is a crossover. Depending on whether the flow

passes to the left, right, or ends at the GFP, the low-energy limit is given by classical general

relativity with a negative (Type Ia), positive (Type IIIa) or zero (Type IIa, separatrix) value of the

cosmological constant. The shaded region thereby illustrates the part of the phase diagram where

the dimensionful couplings are scale-independent, so that classical general relativity provides a

good approximation of the physics in this region.

A consequence of the flow pattern shown in figure 1 and implied by the fixed point scaling

(2.11) is the decrease of the dimensionful Newton’s constant for increasing k. This lends itself

to the interpretation that gravity is anti-screening. The energy and momentum of the virtual

particles surrounding every massive body experiences a gravitational pull towards this body,

adding positively to its bare mass. Thus the cloud of virtual particles leads to an effective mass,

that increases with increasing distance [19].

Extension of the Einstein-Hilbert truncation by surface terms

In view of black hole physics, an important generalization of the Einstein-Hilbert truncation is

its extension to spacetimes M with boundary ∂M 6= 0. This extension has been carried out in

Ref. [27] and supplements the “bulk” Einstein-Hilbert action (2.2) with the Gibbons-Hawking

boundary term

Γ∂
k = − 1

16πG∂
k

∫

∂M
dd−1x

√
H

(
2K − 2Λ∂

k

)
. (2.12)

Here Hµν = gµν −nµnν is the boundary metric induced by gµν , n
µ is the outward unit normal to

the surface ∂M, and K ≡ gµνDµnν denotes the trace of the intrinsic curvature tensor. Besides

the bulk Newton’s constant Gk and cosmological constant Λk, this ansatz contains two additional

running coupling constants, the boundary Newton’s constant G∂
k and a boundary cosmological

constant Λ∂
k . For Gk = G∂

k the Einstein-Hilbert and Gibbons-Hawking term have the correct

normalization for a well-posed variational problem, while the cosmological constants bear no

special relationship. A straightforward dimensional analysis shows that Gk and G∂
k come with

the same canonical mass dimension while the dimensions of the cosmological constants differ by

one,
[
Λ∂
k

]
= +1. Following (2.3), we introduce the dimensionless counterparts of the boundary

coupling constants

g∂k ≡ kd−2 G∂
k , λ∂

k ≡ k−1 Λ∂
k . (2.13)

The couplings {g, g∂ , λ, λ∂} provide coordinates for the four-dimensional theory space spanned

by this truncation.
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g∗ λ∗ g∂∗ λ∂
∗

G-G-FP 0 0 0 0

G-NG-FP 0 0 −6π 4/3

NG-G-FP g∗ λ∗ 0 0

NG-NG-FP g∗ λ∗ −12π 1−2λ∗

7+16λ∗

4
3
6+16λ∗

7+16λ∗

Table 1: The coordinates of the four fixed points appearing in the bulk-boundary system extending

the Einstein-Hilbert truncation. The values of g∗, λ∗ are given in (2.11).

The beta functions arising from this ansatz have a block-diagonal form. The flow of the bulk

constants is independent of g∂k , λ
∂
k and again given by (2.5). This system is supplemented by the

beta functions for the boundary couplings

k∂kg
∂
k = βg∂ (gk, g

∂
k , λk) , k∂kλ

∂
k = βλ∂ (gk, g

∂
k , λk, λ

∂
k) , (2.14)

where

βg∂ =
(
d− 2 + η∂N

)
g∂ ,

βλ∂ =
(
η∂N − 1

)
λ∂ − g∂

8(4π)(d−3)/2

(
2d(d+ 1)Φ1

(d−1)/2(−2λ)− 8dΦ1
(d−1)/2(0)

−d(d+ 1)ηN Φ̃1
(d−1)/2(−2λ)

)
.

(2.15)

Here

η∂N (g, g∂ , λ) =
g∂

3(4π)d/2−1

(
d(d+ 1)Φ1

d/2−1(−2λ)− 4dΦ1
d/2−1(0)

−1
2d(d+ 1)ηN Φ̃1

d/2−1(−2λ)
)
,

(2.16)

is the anomalous dimension of the boundary Newton’s constant and the anomalous dimension of

the bulk Newton’s constant ηN (g, λ) is given by (2.6).

Owed to the block-diagonal structure, the phase diagram and in particular the fixed point

structure of the bulk couplings remains unaltered. Extending the analysis to the full system, one

finds that the boundary sector also possesses a Gaussian (G) and non-Gaussian (NG) fixed point.

The fixed point structure is then given by the tensor product of these fixed points with their bulk

counterparts so that one obtains the four fixed points displayed in table 1. The last two fixed

points are characterized by the critical exponents

NG-G-FP: θ1,2 = 1.475 ± 3.043i , θ3 = −2 , θ4 = 1

NG-NG-FP: θ1,2 = 1.475 ± 3.043i , θ3 = 3 , θ4 = 2 .
(2.17)

Thus, at the NG-NG-FP all four scaling fields are UV relevant while the NG-G-FP exhibits one

irrelevant scaling field.
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The semi-classical approximation

In view of phenomenological applications it is useful to study the full system in the semi-classical

(or one-loop) approximation. In this case, the analysis neglects the “improvement terms” con-

taining the anomalous dimensions ηN and η∂N on the r.h.s. of the flow equation (2.1) and all

threshold functions are evaluated at zero cosmological constant. In this manner the approximate

anomalous dimensions are given by

ηN = −(d− 2)ωd g , ηN = −(d− 2)ω∂
d g

∂ , (2.18)

with the numerical coefficients

ωd =
1

3(d− 2)(4π)d/2−1

(
(6d(d − 1) + 24)Φ2

d/2(0)− d(d− 3)Φ1
d/2−1(0)

)
,

ω∂
d = − d(d− 3)

3(d − 2)(4π)d/2−1
Φ1
d/2−1(0) .

(2.19)

For d = 4 and the optimized threshold functions these evaluate to

ω4 =
11

6π
> 0 , ω∂

4 = − 1

6π
< 0 . (2.20)

The dimensionful RG equations k∂kGk = ηN Gk then have the following simple but exact

solution

Gk =
G0

1 + ωdG0 kd−2
, (2.21)

G∂
k =

G∂
0

1 + ω∂
d G

∂
0 k

d−2
. (2.22)

The signs in (2.20) imply hat the bulk and boundary Newton’s constants run in opposite direc-

tions. Since ω4 is positive, Gk decreases for increasing k while ω∂
4 < 0 implies that G∂

k increases

when k is increased. The feature that ηN and η∂N come with different signs also holds beyond the

semi-classical approximation and is largely independent of the choice made for Rk. The relation

(2.21) interpolates continuously between limk→0Gk = G0 and limk→∞ gk = (ωd)
−1, respectively.

When studying the consequences arising from the phase diagram shown in figure 1, it is

important to realize that while many features like the existence and critical exponents of the

fixed points and the crossover pattern is independent of the choice of regulator, the detailed form

of the RG trajectory will depend on Rk. From the phenomenological point of view it is then viable

to approximate the RG trajectories through analytic formulas capturing the universal features of

the flow. Restricting to d = 4, one parameterization, initially advocated in Refs. [64, 30] models

the RG flow of Gk and Λk by the two-parameter family of curves

g(k) =
G0k

2

1 + k2/g∗
, (2.23)

λ(k) = λ∗ +
1

k2
Λ0 −

g∗λ∗

G0k2
Log

[(
1 +G0

k2

g∗

)]
. (2.24)
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These interpolate smoothly between limk→∞(gk, λk) = (g∗, λ∗) in the UV and the two free pa-

rameters limk→0(Gk,Λk) = (G0,Λ0) in the IR, thus reproducing the correct crossover behavior

from the quantum to the classical regime. We will mostly resort to either (2.21) or this pa-

rameterization of the RG trajectories when performing numerical studies with λk and gk in the

sequel.

Based on the flow pattern shown in figure 1, it is plausible that the short distance physics

of a black hole is not controlled by classical general relativity but intrinsically connected to the

NGFP, entailing the scaling relations (2.11). Notably, these scaling relations are independent of

the Einstein-Hilbert truncation used to derive the beta functions. They solely rely on the existence

of the NGFP and the resulting scale invariance at this point. We will then review consequences

resulting from the scale dependent coupling constants for the structure and singularities of the

classical black hole solution in the following sections.

2.2 The physical interpretation of the RG scale

The scale dependence of the coupling constants investigated in the last section immediately carries

over into a scale dependence of the effective average action. A key question when dealing with a

concrete physics problem then concerns the relation of the cutoff scale k to the physical scales of

the system under consideration. For example, the dimensionful physical constants for a classical

Schwarzschild black hole are Newton’s coupling G0 and the black hole mass M . Thus, when

calculating quantum corrections to this system by using Γk one expects that the scale k is to be

identified with a “typical” scale of the geometry and in addition depends parametrically on the

dimensionful parameters of the system k = k(x;G0,M0).

In general, the cutoff identification k = k(x) is not unique and its construction always involves

a certain level of “physics intuition”. There are, however, some very general principles that any

physically reasonable choice should satisfy. Firstly, the function k(x) should be independent of the

particular choice of coordinates in which the (black hole) geometry is formulated. In other words,

k(x) should be constructed from diffeomorphism invariant quantities as, e.g., proper distances

or scalar curvature invariants. Secondly, it is reasonable to expect that short distance physics

should map to large values k while the long distance physics should be related to small values

of k. Finally, the cutoff identification should respect the symmetries of the underlying geometry,

i.e., a Killing vector of the classical geometry should remain a Killing vector upon carrying out

the improvement procedure. For problems that involve more than one dimensionful scale the

implementation of these requirements still leaves some freedom in the construction of k(x), so

that the robustness of the conclusions drawn from the RG improvement has to be checked for

various plausible choices of the cutoff identification. In the following we will then introduce the

most frequently used scale setting procedures in asymptotic safety, where only the latter ones

have been applied in the context of black hole geometries.

A general scale setting procedure interprets the k in Γk as an independent field and subse-

quently solves the corresponding (algebraic) equations of motion [65, 66, 64, 67]. For the the
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Einstein-Hilbert truncation this procedure corresponds to solving the equation

R

(
1

Gk

)′

− 2Λk

(
Λk

Gk

)′

= 0 , (2.25)

where ′ ≡ ∂k2 . Close to the UV fixed point one approximates Gk ≈ g∗/k
2 and Λk ≈ λ∗k

2 and

equation (2.25) gives

k2 =
R

4λ∗

. (2.26)

An other general procedure is motivated on the observation that k2 can in principle be iden-

tified with any diffeomorphism-invariant quantity that is present in the theory, that has the right

dimensions. It was argued in Refs. [68, 69, 70, 71] that the simplest choice along this line would

be

k2 = ξR , (2.27)

which is actually consistent with the UV limit of the condition (2.25).

Ideally, when applying this procedure, the equations of motion of the improved action, must

be solved simultaneously with the scale setting condition. For example in the Einstein Hilbert

case without matter, the equations

Rµν −
1

2
gµνR = −gµνΛk −Gk

(
gµν D

2 −DµDν

) 1

Gk
, (2.28)

would have to be solved simultaneously for gµν(x) and k(x), since the condition (2.25) is actually

the Bianchi identity applied to the equation (2.28). Due to the highly non-trivial form of the

functional dependence of Λk and Gk, this procedure has however not yet been realized for black

holes where, so far, an alternative improvement method has been used.

An alternative tool of studying effects of running couplings in quantum field theory is the

procedure of improving classical solutions by “upgrading” the coupling constants to their scale-

dependent counterparts. The parameter k introduced in this manner must then be connected to

the physical quantities of the system through a scale setting procedure. This idea has for example

been successfully implemented in the context of QED when deriving the Uehling correction to the

Coulomb potential [72]. For the case of gravity one could try to use one of the scale setting pre-

scriptions (2.25, 2.27), however their application to specific physical problems and improvement

procedures is not ideal. For the case of improving classical black hole solutions this can be easily

seen by the fact that the classical Schwarzschild solution actually has a vanishing Ricci scalar

everywhere outside of the black hole R = 0. Thus applying (2.27) would actually not improve

the classical solution at all since k would simply remain zero.

In order to obtain a finite and non-zero scale identification for improving classical black hole

solutions one typically refers to a different scale setting scheme. This procedure assumes that for

dimensional reasons the momentum scale k has to be inversely proportional to a physical distance

scale d(r) of the classical geometry

k(P (r)) =
ξ

d(P (r))
, (2.29)
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where d(P ) is the distance scale which provides the relevant cutoff k when the test particle is

located at the point P . The constant ξ is expected to be of order unity and has to be fixed by

an additional physics argument. Still, there are various ways of defining a meaningful physical

distance scale d(P (r)) for black holes. In the context of RG-improved Schwarzschild black holes,

several choices for d(r) have been advocated in the literature. Here we will identify d(P ) with

the radial proper distance from the center of the black hole to the point P along a purely radial

curve Cr [21]

dr(r) =

∫

Cr

√
|ds2| . (2.30)

This prescription has the nice feature that it allows for a very direct physical interpretation in

terms of distance outside the horizon. A possible caveat comes due to the fact that ds actually

changes its sign at the horizon. A monotonic d(r) is recovered by imposing the condition of an

absolute value |ds| in the integral. An alternative, equally reasonable, cutoff identification uses

the proper time it takes for an observer starting at rest at coordinate distance r from the black

hole singularity to reach r = 0

dt(r) =

∫

Ct

√
ds2 . (2.31)

This proper time identification building on the radial timelike geodesic Ct has the advantage that

it is smooth at the classical horizon.

3 RG-improved black holes in asymptotically flat space

After the short review of the fundamental ingredients underlying asymptotic safety, we now apply

the RG-improvement scheme introduced in section 2.2 to the classical black hole solutions in order

to get some first insights in the quantum properties of black holes within asymptotic safety. We

start with the improved Schwarzschild solution in section 3.1 and subsequently generalize the

discussion by including angular momentum (section 3.2) and extra dimensions (section 3.3).

3.1 The Schwarzschild solution

The classical Schwarzschild black hole is described by the metric (1.1) with the radial function

(1.2). As described in section 2.2 this classical solution of the Einstein equations can be quantum-

improved, by replacing the classical coupling constants by their scale-dependent counterparts.

Thus, the improved radial function reads

f(r) = 1− 2Gk M

r
. (3.1)

The precise details of the scale setting ki(r) = ξ/di(r) then depend on the choice of the spacetime

curve that is used for the definition of the physical cutoff. For the purely radial curve Cr the

integration gives inside the classical horizon

dr(r)|r<2G0M = 2G0M arctan

√
r

2G0M − r
−

√
r(2G0M − r) (3.2)

13



and outside the classical horizon

dr(r)|r>2G0M = πG0M + 2G0M ln

(√
r

2G0M

√
r

2G0M
− 1

)
+

√
r(r − 2G0M) . (3.3)

Eqs. (3.2) and (3.3) match at the classical horizon. For a more compact description it is useful

to extract the asymptotic behavior of these distance functions. Close to the curvature singularity

at r = 0 one finds

dr(r)|r≪2G0M ≃ 2

3

1√
2G0M

r3/2 +O(r5/2) (3.4)

while the asymptotic behavior for large r is given by

dr(r)|r≫2G0M ≃ r +O(r0) . (3.5)

The distance function obtained from the proper time of a radially infalling observer Cr leads to

the small r-asymptotics

dt(r) ≃
π

2

1√
2G0M

r3/2 + . . . . (3.6)

This asymptotic coincides with (3.4) for small r up to an irrelevant numerical factor. Substituting

these asymptotics into (2.29) one obtains

k(r) ≃ 3

2

√
2G0M ξ r−3/2 + . . . . (3.7)

The free parameter ξ is typically of order one and the different normalizations (3.4) and (3.6)

can be absorbed by a redefinition of ξ. Thus the radial and proper time improvements coincide

in the UV (small radii), but the latter leads to a lower scale choice kt(r) < kr(r) in the IR (large

radii). When performing a RG improvement for a particle physics system which admits more

than one intrinsic momentum scale, one chooses typically the largest scale that can cut off the

running couplings. Using this analogy, the most commonly used scale identification employs Cr.
While the cutoff identification originating from the distance functions (3.2, 3.3) is perfectly valid,

it is convenient to approximate the distance function by

dr(r) =

√
2r3

2r + 9G0M
. (3.8)

This rather simple analytic formula interpolates smoothly between the two scaling regimes ob-

tained as r → 0 and r → ∞.

We now insert the cutoff-identification k(r) = ξ/dr(r) into the improved solution (3.1). Here

it would be straightforward to carry out this improvement based on the scale-dependence encoded

in the full beta functions (2.4) using numerical methods. In order to get analytic access to the

system, one can, however, approximate the scale-dependence of Newton’s constant by the one-

loop result (2.21). Combining this flow with the distance function (3.8) one obtains the improved

radial function

f(r) = 1− 4G0Mr2

2r3 + ω̃G0(2r + 9G0M)
, (3.9)
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Figure 2: Radial dependence of the laps function f(r) for G0 = 1, ω̃ = 1 for different values of the

mass M = 1.5, 2.2, 3 (red top, black middle, blue bottom). The classical behavior represented

by the dashed lines is shown for comparison.

where ω̃ = ωξ2. The improved radial function determines the properties of the quantum-improved

black hole such as its horizon structure, asymptotic behavior and thermodynamics.

The properties of the quantum-improved black hole resulting from (3.9) are conveniently

obtained from figure 2 which shows the improved radial function for various masses M . This

analysis leads to the following conclusions:

Classical limit:

First of all one sees that for large r the improved line-element agrees with the classical one

f(r) = 1− 2G0M

r

(
1− ω̃

G0

r2

)
+O

(
1

r4

)
. (3.10)

This can also be stipulated from the large r behavior of figure 2. Furthermore, (3.10) allows

to read off the leading correction to Newton’s potential. For ω̃ = 118/15π this correction is in

agreement with the perturbative result obtained in Ref. [73]. This agreement can then be used

to fix the (hitherto undetermined) parameter ξ.

Singularity:

The classical Schwarzschild black hole possesses a curvature singularity at r = 0 where the square

of the Riemann tensor diverges. For the improved solution the fate of this singularity can be

investigated by expanding (3.9) for small r

f(r) ≃ 1− 4r2

9ω̃
+O(r3) . (3.11)

This shows that the improved radial function is actually well-behaved at r = 0 and has the form of

the de Sitter metric with an effective cosmological constant Λeff = 4/(3ω̃) > 0. This feature was
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baptized “de Sitter core” in Ref. [21]. The regularity of the improved solution can furthermore be

verified by calculating the invariants that are singular for the classical Schwarzschild black hole

RµναβR
µναβ = 2

(
4

3

)3

ω̃2 . (3.12)

Thus the square of the Riemann tensor remains finite, pointing at the resolution of the classical

black hole singularity.

Horizon structure:

The horizon structure encoded in the improved radial function (3.9) turns out to be richer than

in the classical case. One finds that the number of horizons NH depends on the mass parameter

NH =





0 for M < Mcr

1(double) for M = Mcr

2 for M > Mcr

, (3.13)

as it can be seen from figure 2. For M > Mcr there is an outer and an inner horizon situated at

r+ and r−, respectively. If the mass of the black hole equals the critical mass, the two horizons

coincide while for M < Mcr there is a naked singularity. For the interpolation (3.8), the critical

mass Mcr is found to be Mcr ≈ 0.20 in Planck units.

Causal Structure:

Apart from the non-singular structure at r = 0, the causal structure implied by the improved

radial function is very similar to the one of a Reissner-Nordström black hole. For M > Mcr, one

can distinguish five main regions

I and V : r+ < r < ∞ (3.14)

II and IV : r− < r < r+

III and III ′ : 0 < r < r− .

It is straight forward to calculate the geodesics in this spacetime structure. A typical geodesic is

shown in the Penrose diagram, figure 3. Starting in region I (r < ∞) at rest the test mass will fall

into the black hole, pass the horizon r+ and transit the region II with inverted time direction.

When passing region III, the test mass is repelled outwards, back to regions with larger r: IV

and V. This is in full analogy to the Reissner-Nordström case. However, one difference is that the

improved lapse function allows a particle with sufficient energy (Kkin > 0 at r → ∞) to actually

reach the non-singular point r = 0.

Thermodynamics:

Following the standard discussion of black hole thermodynamics in Euclidean time and with the

usual regularity condition at the cone of the resulting R2 × S2 topology, the temperature of a

horizon is given by (1.3). Applying this equation to (3.9) gives the temperature at the outer black

hole horizon at r+

TBH =
1

8π

MG0r+(r
3
+ − ω̃G0r+ − ω̃G2

09M)

(r3+ + G̃0(r+ + (9/2)G0M))2
. (3.15)
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Figure 3: Penrose diagram for the improved Schwarzschild spacetime [21]. Depicted are two

geodesics of radially infalling particles, one of a particle with Kkin > 0 at r → ∞ and an other

one of a particle starting at rest at finite r. One observes that the latter does not reach the origin

at r = 0.

Since also the horizon radius r+ is a function of M , it is instructive to plot the temperature

TBH(M) shown in figure 4. One observes that for masses M > Mcr the temperature follows the

same 1/M dependence as for the usual classical solution. However, when M approaches Mcr, the

temperature of the improved solution drops to zero, which was be interpreted as the formation of

a stable black hole remnant. This picture of remnant formation has later on also been confirmed

by analyzing the dynamics of the black hole evaporation process based on the RG improved

Vaidya-metric [22].

3.2 The Kerr solution

We now review the extension of the previous analysis to black holes carrying angular momentum,

thereby mainly following the original Refs. [23, 24]. The classical rotating black hole in four

dimensions is described by the Kerr metric (reviewed, e.g., in Ref. [3]). In Boyer-Lindquist

coordinates the classical line element of this metric is

ds2 = −
(
1− 2MG0r

ρ2

)
dt2 + ρ2

∆ dr2 + ρ2dθ2 + Σ sin2 θ
ρ2

dϕ2 − 4MG0ra sin
2 θ

ρ2
dtdϕ. (3.16)

Here a = J/M is the reduced angular momentum and we use the common abbreviations

ρ2 ≡ r2 + a2 cos2 θ , ∆ ≡ r2 + a2 − 2MG0r , (3.17)
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Figure 4: Mass dependence of the Hawking temperature for the improved Schwarzschild solution

(solid line) for G0 = 1 and ω̃ = 1 in Planck units in comparison to the classical temperature

(dashed line).

and

Σ ≡
(
r2 + a2

)2 − a2∆sin2 θ . (3.18)

The family of Kerr solutions are characterized by two parameters the mass M and their angular

momentum J . The non-trivial angular momentum reduces the spherical symmetry, characterizing

the Schwarzschild solution, to axial symmetry around the rotation axis. As a consequence the Kerr

solution has has a richer structure than the Schwarzschild case. The grr-component degenerates

at the two (spherically symmetric) horizons situated at

r± = MG0 ±
√
(MG0)2 − a2 . (3.19)

The vanishing of gtt produces two static limit surfaces S± at

rS±
(θ) = MG0 ±

√
(MG0)2 − a2 cos2 θ . (3.20)

Owed to the angular momentum, the horizons and limit surfaces coincide at the poles θ = 0, π

only. Moreover, the classical Kerr solution possesses two translational Killing vectors related to

the time direction and one angular direction

t ≡ tµ∂µ =
∂

∂t
, ϕ ≡ ϕµ∂µ =

∂

∂ϕ
. (3.21)

In the context of asymptotic safety, this classical Kerr spacetime can be improved in the

same spirit as the Schwarzschild black hole. Still maintaining the general guideline that the RG

improvement should not break the classical symmetries of the solution, the reduced symmetry

group of the Kerr black hole allows an additional θ-dependence in the cutoff identification

k = k(r, θ) = ξ/d(r, θ) . (3.22)
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Figure 5: Distance scale d(r) in Planck units at θ = π/2, for MG0 = 10, and for various values

of a [24]. For comparison this figure further shows the straight line that would correspond to

d(r) = r.

One choice for the distance function then generalizes the scale setting procedure (2.29) to the

classical Kerr metric (3.16) by taking the (absolute value) of the proper distance between the

origin and the point P as d(r, θ). The natural choice for the curve Cr connecting these points is

the “shortest path” with dt = dφ = dθ = 0 leading to the identification

d (r, θ) =

∫ r

0
dr̄

√∣∣∣∣
r̄2 + a2 cos2 θ

r̄2 + a2 − 2G0 M r̄

∣∣∣∣ . (3.23)

The distance function is easily obtained by a numerical evaluation of the integral. For special

cases as, e.g., in the equatorial plane analytical expressions can be obtained as well. The distance

function obtained in this way is illustrated in figure 5, which shows the r-dependence of d(r, θ)

in the equatorial plane. One readily observes that at the two horizons r± the first derivative of

d(r, θ) diverges while the function itself remains finite. Moreover, the two horizons approach each

other for increasing a. For the critical value a = MG0, the two horizons coincide, leading to a

divergence in the distance function at r±. For θ 6= π/2 the d(r, θ) obtained numerically displays

the same qualitative behavior albeit with larger numerical values d(r, θ = π/2) < d(r, θ 6= π/2).

Since the θ dependence turns out to be rather weak, the following discussions will concentrate on

the r dependence of the energy scale k.

The explicit form of the RG-improved Kerr metric is obtained by replacing G0 → Gk in the

classical line element. Again we use the one-loop approximation (2.21) to parameterize the scale-

dependence of Newton’s constant. The cutoff identification (3.22) supplemented by the distance

function (3.23) then allows to translate this k-dependence into a dependence on r (and θ) leading

to the RG-improved Kerr metric

ds2 = −
(
1− 2MGk(r)r

ρ2

)
dt2 + ρ2

∆I
dr2 + ρ2dθ2 + ΣI sin

2 θ
ρ2

dϕ2 − 4MGk(r)ra sin
2 θ

ρ2
dtdϕ. (3.24)
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Here, ∆I and ΣI denote the improved counterparts of the functions (3.17) and (3.18), respectively

∆I ≡ r2 + a2 − 2MGk(r)r , ΣI ≡
(
r2 + a2

)2 − a2∆I sin
2 θ . (3.25)

Several features of the RG-improved Kerr spacetime can be deduced by studying special

classes of observers. The conserved quantities for trajectories in the improved Kerr solution can

be obtained from uµ ≡ dxµ/dτ , the momentum pµ = muµ and the Killing vectors (3.21)

E = −tµp
µ , L = −φµp

µ . (3.26)

• A special case of observers is given by the condition L = 0, which is known as the zero

angular momentum observer. Although the angular momentum of this observer is vanishing,

the relation (3.26) gives a non-vanishing temporal dependence of the angular coordinate

itself

ω ≡ dφ

dt
=

2G(r)M ar

a2∆I(r) sin
2 θ − (r2 + a2)2

. (3.27)

For constant G0 and ∆, this effect is known as frame dragging. For the improved Kerr

black hole ω is modified due to the radial dependence of G(r) and ∆I(r).

• The RG improvement also modifies the classical static limit surfaces (3.20). The condition

tµtνgµν = 0 is then equivalent to

QS(ω̃, a, M, θ) ≡ r2 + a2 cos2 θ − 2G(r)M r = 0 . (3.28)

Solving this relation for r gives the improved static limit surfaces SI
± situated at rIS± =

rIS±(θ). Like in the classical case, the number of static limit surfaces depends on the values

of M and a. One observes that the variable coupling G(r) comes with the mass parameter

M . Therefore, this correction, as long as it is small, can be captured by a “renormalized”

(somewhat lower) effective mass M̃ ≈ MG(r±)/G0.

• In order to study the event horizon of (3.20), one has to study so called stationary observers,

which perceive no time variation of the gravitational field. This can be implemented by

demanding that the observer’s four velocity uµ is proportional to the Killing vector ξµ =

tµ + (dφ/dt)φµ, say uµ = γξµ. For large black hole masses M ≫ mP l, this condition leads

to

QH(ω̃, a, M) = r2 + a2 − 2G(r)M r = 0 . (3.29)

The solutions of this relation determine the position rIH±
of the improved horizons.

For the classical Kerr solution, as well as the improved solutions where the improvement can be

considered as a small correction, the four surfaces can be ordered by increasing radius

rS−(θ) ≤ r− ≤ r+ ≤ rS+(θ) . (3.30)

This rich structure of horizons and static limit surfaces is illustrated in figure 6. One observes

that due to the improvement, the outer horizon and static limit surface (r+, rS+) gets shifted
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Figure 6: Structure of a classical Kerr black hole (thick lines) with G0M = 6 and a = 5 (in Planck

units), in the x-y–plane, in comparison to its improved counterpart (non-thick lines). Solid lines

represent event horizons, while dashed lines represent the static limit surfaces [24].

inward, while the inner horizon and static limit surface (r−, rS−) are pushed towards larger values

r.

Classical Kerr black holes with a > G0 M have no horizons and give rise to a naked singularity.

In order to prevent this problem one imposes a so called extremality condition on those param-

eters. This extremality occurs when the horizons H± coincide at a radius re. For the improved

black hole, this extremality condition can be based on (3.29) and translates to the conditions

QH(ω̃, a, M)|re = 0 , (3.31)

dQH(ω̃, a, M)

dr
|re = 0 ,

d2QH(ω̃, a, M)

dr2
|re ≥ 0 .

For the classical case, the solution of the conditions (3.31) can be found analytically and gives

a linear dependence between the mass M and the angular momentum parameter a: the critical

black hole satisfies a = G0M . The RG-improved solution shows this behavior for large values a

only. For small a there are sizable corrections and the critical configuration is obtained for finite

mass Mcr. Notably, this result is in complete agreement with the remnant formation picture

developed from the analysis of the Schwarzschild black hole of the previous section where one

also finds a critical configuration at finite remnant mass Mcr.

An other interesting property of Kerr black holes is the possibility of extracting energy from

them by means of the Penrose process [3]. This process takes advantage of the fact that the

energy of a particle (3.26) can actually take negative values. By letting a combined system A

fall into the ergosphere of a Kerr black hole and then letting it disintegrate into two particles B
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and C, where B falls into the black hole (with negative energy) and C escapes into infinity, one

can show that due to energy conservation of the entire system, the black hole has actually lost

energy. For large black hole masses M ≫ mP l, the discussion of this process follows the classical

discussion with negligible corrections. The numerical analysis of Ref. [24] shows that quantum

effects only turn out to become important for relatively small black holes masses M ≈ mP l. The

suppression of this kind of energy loss is analogous to the suppression of the Hawking radiation

in the Schwarzschild case, as it was discussed in section 3.1.

As it was previously mentioned, many corrections due to renormalization group effects can

be interpreted in terms of renormalized classical “charges”. For the case of the Kerr solution, the

classical charges are the mass parameter M and the angular momentum J . These charges can

also be obtained from surface integrals, by calculating the so-called Komar integrals

MKomar = − 1

8πG0

∫

S
∇αtβdSαβ , (3.32)

and

JKomar =
1

16πG0

∫

S
∇αϕβdSαβ , (3.33)

for the given metric. Here S is a two-sphere at spatial infinity. The surface element dSαβ is given

by dSαβ = −2n[α rβ]
√
σd2θ where nα and rα are the timelike and spacelike normals to S. For the

classical Kerr solution, the integrals give exactly the corresponding parameters in the metric [4].

Further, since the improved line element of the Kerr metric actually approaches the classical line

element, on knows that also for the improved Kerr metric one finds

M I
Komar|r→∞ = M , JI

Komar|r→∞ = J . (3.34)

In the light of this identity, one can deduce that the bare charges (M, J) and the quantum-

improved charges (M I
Komar, J

I
Komar) do actually agree at spatial infinity. The difference with the

purely classical case comes due to the observation that for the classical black hole, the Komar

integrals, evaluated at the outer horizon, have the same value as at spatial infinity

MH ≡ MKomar|r→r+ = M , JH ≡ JKomar|r→r+ = J . (3.35)

This is however not the case for the improved Kerr solution, where the Komar integrals evaluated

at the outer horizon give[24]

M I
H =M

G (r+)

G0

{
1−

[(
r2+ + a2

)
G′ (r+)

aG (r+)

]
arctan

(
a

r+

)}

JI
H =

{
J +

[
1− 2MG (r+)

a
arctan

(
a

r+

)][
M2G′ (r+) r

2
+

a

]}
G (r+)

G0
.

(3.36)

The difference between eqs. (3.35) and (3.36) can readily interpreted as quantum dressing of the

bare charges. The dressing has various interesting features:[23, 24]
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• Firstly, one notes that
M I

H

M
≤ 1, and

JI
H

J
≤ 1 . (3.37)

Which means that the “charge” at the horizon and the quantum contribution outside the

horizon sum up in such a way that they return to the bare value at spatial infinity.

• Secondly, the relations (3.36) satisfy the classical Smarr formula[74]

M I
H = 2ΩH JI

H +
κA

4πG0
, (3.38)

where

ΩH = a/((rI+)
2 + a2) , (3.39)

is the angular velocity,

κ = (rI+ −G(rI+)M − rI+G
′(rI+)M)/((rI+)

2 + a2) , (3.40)

is the surface gravity and

A = 4π(r2+ + a2) , (3.41)

is the surface area of the black holes outer horizon.

• Thirdly, the expressions (3.36) are formally identical to the Komar integrals for a classical

Kerr-Newman spacetime with effective electric charge square

q2 = 2Mr2+G
′ (r+) /G0 . (3.42)

A discussion of the black hole temperature from (3.38) is direct and largely analogous to

the discussion in the Schwarzschild case.

Although, the horizon and temperature results based on (3.38) turned out to be straight

forward and direct, the formulation of a complete entropy relation and a first law of black hole

thermodynamics seems to be much harder. Actually it was noted that “either there exists no

entropy-like state function for the improved (Kerr) black holes or the classical relation T = κ/2π

does not hold true for them”[24].

3.3 The Schwarzschild solution with extra dimensions

The discussions of the RG improved Schwarzschild black hole from subsection 3.1 can also be

generalized to a d-dimensional spacetime where d ≥ 4. This analysis is of special interest for

models with large extra dimensions [75, 76] where the Planck scale Md could be of the order of

a few TeV. In this case energy particle collisions (e.g. at the LHC) could lead to the production

of microscopic black holes [77, 78, 79, 80, 81, 82]. This reduction of the usual Planck scale to the

microscopic Planck scale Md is achieved by a compactified volume Vd−4 of extra dimensions

M2
P l = Vd−4(Md)

d−2 . (3.43)
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The first relation between asymptotic safety to theories including large extra dimensions was

the observation that the NGFP (2.9), providing the key element of the asymptotic safety program,

also exists for d ≥ 4 [50, 83]. Thus asymptotic safety also constitutes a viable mechanism for

theories including extra dimensions. Subsequently, it was argued that this mechanism could

also affect the black hole production process and its related observables [84, 85, 86, 87, 88, 33].

Further, due to the possibility of the formation of a black hole remnant within asymptotic safety

(see figure 4), this approach gave a well funded framework for studying the formation of black

hole remnants at the large hadron collider [89, 90, 91]. This subsection summarizes the central

results of this analysis, mainly following the notation of Ref. [33, 87].

The starting point is the d-dimensional Schwarzschild solution

ds2 = −f(r)dt2 + f(r)−1 dr2 + r2 dΩ2
d−2 , (3.44)

with the radial function

f(r) = 1− 2GN M

rd−3
. (3.45)

Here GN denotes the classical, d-dimensional Newton’s constant, the reduced black hole mass M

is related its physical mass via

M =
4Γ((d− 1)/2)

(d− 2)π(d−3)/2
Mphys , (3.46)

and the Schwarzschild radius rcl of the solution is given by

rd−3
cl = 2GN M . (3.47)

We now adapt the RG-improvement procedure of section 3.1 to the generalized Schwarzschild

black hole. After replacing the scale dependent coupling GN → Gk one has to impose the

cutoff identification relating k to the physical scale. The relation (2.30) can be generalized

straightforwardly to the d-dimensional case, yielding

dr(r) =

∫ r

0
dr′

∣∣∣∣1−
(rcl
r′

)d−3
∣∣∣∣
−1/2

. (3.48)

For large radii r ≫ rcl, dr(r) increases linearly with r

lim
r→∞

dr(r) = r , (3.49)

while for small radii r ≪ rcl the asymptotics is given by

lim
r→0

dr(r) =
2r(d−1)/2

(d− 1)r
(d−3)/2
cl

. (3.50)

The complete dr(r) is obtained by numerically integrating (3.48) and shows two asymptotic

regions, which are connected by a short transition regime situated at r ≃ rcl. In the spirit of

(3.8) one can define an interpolating function that connects these asymptotic scaling regimes

dint(r) =
2r(d−1)/2

(d− 1)(rcl + ǫr)(d−3)/2
, (3.51)
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Figure 7: Dependence of the critical mass Mcr on the parameter t̃ for various numbers of dimen-

sions and a reduced Planck mass of Md = 1TeV . This parameter can be related to the parameter

on ω̃ by the relation t̃ ≈ ω̃G2
0M

2
crM

d−2
d [87].

Setting ǫ = (d/2 − 1/2)−2/(d−3) reproduces the asymptotic behavior for small and large values r

for all d ≥ 4, albeit leading to a somewhat more pronounced transition regime.

Combining the interpolating function (3.51) with the running of Gk obtained in the one-loop

approximation (2.21) the r-dependent Newton’s constant becomes

G(r) =
G0r

α

rα + ω̃G0(rcl + ǫr)α+2−d
, (3.52)

with

α =
1

2
(d− 1)(d − 2) , ω̃ = ωd ξ

d−2

(
d

2
− 1

2

)d−2

. (3.53)

Finally the improved radial function for the scale setting (3.51) reads

f(r) = 1− G0r
α

rα + ω̃G0(rcl + ǫr)α+2−d

M

rd−3
. (3.54)

The asymptotic behavior and horizon structure entailed by the improved radial function is

essentially the same as for the four-dimensional case shown in figure 2. Again there is a critical

mass parameter Mcr. For M > Mcr the black hole possesses an inner and outer horizon while

for M < Mcr no horizon appears. For M = Mcr the improved radial function has a double zero.

From (1.3) one then concludes that for the critical mass the horizon temperature vanishes. Thus

Mcr constitutes the remnant mass, due to the non-radiating property of the corresponding critical

black hole. The dependence of Mcr on the parameter ω̃ is illustrated in figure 7.

The main interest in higher dimensional black holes comes from the possibility of black hole

production due to high energy collision of particles with invariant collision energy
√
s. In a

semiclassical approximation the cross section for such a black hole production was estimated to

σ(
√
s) = π r2cl θ(

√
s−Md) , (3.55)
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Figure 8: Black hole production cross section as a function of
√
s for d = 6, Md = 1 TeV and for

different values of t̃ [87].

where usually, the minimal mass for this process was assumed to be the reduced the Planck mass

Md, a condition which is implemented in (3.55) by the theta function θ(...). This approximation of

the cross section turned out to also be valid in different approaches (for a more detailed discussion,

we refer to Refs. [92, 93, 94, 95, 96, 97]).

In the context of asymptotic safety this prediction has to be reexamined. The first general-

ization comes with the observation, that the actual horizon radius of (3.54) gets shifted towards

smaller values, as it can be seen from figures 2. This implies a suppression of the black hole pro-

duction cross section. The second generalization comes from the interpretation of the minimal

scale at which this process is expected to occur. Since for masses below Mcr there is actually no

more horizon one can actually only speak of black hole formation for M > Mcr. Thus, the most

straight forward black hole production cross section in the context of asymptotically safe black

holes is

σ̃(
√
s) = π r2+ θ(

√
s−Mcr) . (3.56)

In figure 8 one can see this cross section for various values of t̃ ≈ ω̃−1/d. One observes that for

the production of very massive black holes M ≫ Mcr the improved cross section agrees with the

semi-classical estimate. However, when M approaches Mcr, the numerical values start to differ

significantly. The most drastic difference to the semi-classical estimate appears when M = Mcr,

since this defines the new threshold for black hole production. One sees that this threshold Mcr

can be significantly higher than the ad hoc threshold Md. Since due to the form of the parton

distribution function, the actual production rate for those black holes is strongly peaked at the

threshold this implies that the predicted cross section (3.55) would actually largely overestimate

the semi classical black hole production rate with respect to the rate calculated from (3.56) [87].
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4 Black holes including the cosmological constant

An important observation based on figure 1 is that the gravitational RG flow dynamically gen-

erates a cosmological constant even if it is zero at one particular scale. The scaling dynamics

associated with the NGFP (2.11) shows that the dimensionful Newton’s constant actually flows

to zero while the value of the cosmological constant diverges as k → ∞. On this basis it is

natural to investigate the role of the cosmological constant in the RG-improvement process. The

discussion of section 4.1 and 4.2 mainly follows Ref. [29] while section 4.3 contains new material.

4.1 RG improved (A)dS black holes

The line element of a static, spherical symmetric black hole in the presence of a cosmological

constant is again of the form (1.1). The radial function f(r) now includes an additional term

containing Λ0

f(r) = 1− 2G0 M

r
− 1

3
Λ0 r

2 . (4.1)

Similarly to the classical solution this geometry possesses a curvature singularity at the origin

RµνρσR
µνρσ =

48G2M2

r6
+

8Λ2

3
. (4.2)

This singularity is shielded by a horizon structure where (4.1) vanishes. This structure depends

on the sign of Λ0 and M . For Λ0 ≤ 0 there is a single horizon which agrees with the one of

the Schwarzschild black hole rSS = 2G0M for Λ0 = 0. For Λ0 > 0 and M < (3G0

√
Λ0)

−1 the

geometry possesses two horizons, an inner black hole horizon and an outer cosmological horizon.

For the critical massMcrit = (3G0

√
Λ0)

−1 the two horizons coincide and the line element describes

the Nariai black hole as the maximal black hole in de Sitter (dS) space. For M > Mcrit there is

no horizon and the geometry possesses a naked singularity.

The construction of the RG improved (A)dS black hole directly follows the Schwarzschild

case. The first step promotes the coupling constants appearing in the classical expression (4.1)

to scale-dependent quantities

fk(r) = 1− 2Gk M

r
− 1

3
Λk r

2 . (4.3)

The cutoff identification relating k to the radial distance r, d(r) can be constructed numerically.

For selected sample black holes the corresponding identification arising from (2.30) is shown in

figure 9. The proper time improvement (2.31) gives rise to a quite similar identification, which has

the benefit that is is smooth at the classical horizons. The short distance behavior of d(r) is again

governed by the G0-term in (4.1) so that the expansion (3.4) carries over to the Schwarzschild-

(A)dS geometry.

We now use the RG improvement procedure to “zoom into” the classical black hole singularity.

Being interested in the short distance or high energy limit, we start from the classical radial

function (4.1), promote the coupling constants to scale-dependent quantities and subsequently
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Figure 9: Cutoff-identification k(r) resulting from identifying d(r) with the radial geodesic

distance (2.30). The left and right diagram illustrate the function k(r)/ξ for G0 = 1 and

M = {1, 2.5, 5, 10} (top to bottom curve) for the case of a Schwarzschild-AdS black holes with

Λ0 = −0.001 and a Schwarzschild-dS black holes with Λ0 = 0.001, respectively.

describe the running of Λk, Gk by the scaling laws entailed by the NGFP. The RG improved radial

line element f∗(r) obtained in this way reads

f∗(r) = 1− 2M g∗
k2 r

− 1

3

(
λ∗ k

2
)
r2 . (4.4)

Replacing k(r) by the leading term of the asymptotics (3.7) yields the RG-improved line element

valid at the NGFP

f∗(r) = 1− 2G0 M

r

(
3

4
λ∗ ξ

2

)
− 1

3

(
4 g∗

3G0 ξ2

)
r2 . (4.5)

Most remarkably, the RG-improved function f∗(r) is self-similar to the classical solution (4.1).

Promoting k to a function of r interchanges the terms containing Newton’s constant and the

cosmological constant so that the actual r-dependence remains the same. This entails in particular

that the RG-improved line element also gives rise to a curvature singularity with precisely the

same structure as in the classical case. In this sense the inclusion of the cosmological constant

reverted the resolution of the classical singularity observed in the Schwarzschild case.

Based on (4.5), one can also identify a special value for the a priori undetermined constant ξ.

Adopting

ξ2sc =
4

3λ∗

. (4.6)

the RG-improvement scheme becomes self-consistent in the sense that both the classical and

the RG-improved line element give rise to the same cutoff identification at short distance. For

this value the radial function describes a Schwarzschild-dS black hole with effective cosmological

constant

Λeff =
g∗ λ∗

G0
. (4.7)

Notably, the dimensionality of Λeff (valid in the UV) is set by the square of the Planck massM2
Pl ≡

G−1
0 , while its magnitude (in Planck units) is governed by the universal dimensionless product
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Figure 10: Radial dependence of the RG-improved metric function f(r) for ξ = ξsc. The dashed

lines correspond to the classical solutions while the solid lines correspond to the improved solution

obtained from G0 = 1, and from top to bottom M = {1, 2.5, 5, 10} and Λ0 = −0.001 (left panel)

and Λ0 = 0.001 (right panel).

g∗ λ∗. This product cannot be chosen by hand, but constitutes a prediction from Asymptotic

Safety. Its magnitude has been computed in a number of works g∗ λ∗ ≈ 0.1 [11, 38].

4.2 Hawking radiation and black hole evaporation

The complete r-dependence of the RG-improved radial function is found by modeling the k-

dependence of the coupling constants appearing in (4.3) by the analytic curves (2.23) and subse-

quently replacing k 7→ k(r) with the functions k(r) shown in figure 9. The comparison between

the RG-improved radial function and its classical counterpart is shown in figure 10. Comparing

these curves to the ones shown in figure 2 establishes that the inclusion of the cosmological con-

stant changes the short-distance behavior of the improved line element, so that it is again similar

to the classical version.

The Hawking temperature associated with the inner black hole horizon is found by evaluating

(1.3) for the RG-improved f(r) as a function of the mass parameter M . For the asymptotically

Schwarzschild black hole with Λ0 = 0 the result is shown as the solid curve of figure 11. For

comparison the corresponding temperature for the classical Schwarzschild black hole is shown

as the dashed curve while the dashed dotted curve shows the RG-improved Schwarzschild black

hole without including the cosmological constant discussed in section 3.1. As its most important

feature, the inclusion of Λk prevents that the temperature of the inner horizon drops to zero

at a finite mass Mcr. Thus it is expected that the RG-improved black hole solution evaporates

completely. In this analysis there is no formation of Planck-mass black hole remnants within

asymptotic safety.
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Figure 11: Comparison between the temperature of the (RG-improved) Schwarzschild black hole

with Λ0 = 0. The dash-dotted (lower) curve was obtained in [21] by setting Λk = 0 for all values

k while the solid curve includes the RG-running of Λk. The classical behavior is given by the

dashed upper curve for comparison. From Ref. [29].

4.3 Tracing the origin of the quantum black hole singularity

A rather surprising feature of the RG-improvement procedure is the observation that including

the cosmological constant in the improvement process reintroduces the black hole singularity,

that was removed in section 3. Even though the classical and quantum improved black hole

singularity are formally of the same form, their physical origin is actually quite different. This is

demonstrated by applying the RG-improvement process to empty space.

The starting point is again the line element (1.1). For empty space, including a cosmological

constant, the classical radial function is given by

f(r) = 1− 1

3
Λ0 r

2 . (4.8)

For Λ0 = 0, Λ0 > 0 and Λ0 < 0, this line element provides a metric on flat Minkowski space,

de Sitter space, and Anti-de Sitter space, respectively. These spaces are maximally symmetric

which in particular implies that they are homogeneous, so that “all points are the same”. We

then select the point r = 0 and use the RG improvement to zoom in on this particular point.

For concreteness, the classical spacetime is chosen to be flat Minkowski space with Λ0 = 0.

Adapting the cutoff identification (2.29) to this case yields

k(r) =
ξ

r
. (4.9)

This identification attaches a double meaning to r which acts as a coordinate and, at the same

time, indicates the linear volume size over which the RG improved quantities are averaged.

Introducing the scale-dependence of the cosmological constant Λ0 7→ Λk = λk k
2 with the running

of λk governed by (2.23), the cutoff identification gives rise to the RG improved radial function

shown in figure 12. The function smoothly interpolates between classical flat space and a improve-

ment scheme dependent positive constant f(0) < 1. Notably f(r) remains positive throughout so
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Figure 12: The function f(r) describing the line element for RG-improved flat space, Λ0 = 0 with

the scale-identification k = ξsc/r. For r ≫ 1, f(r) approaches its flatspace limit f(r) = 1, while

for r → 0, f(r) ≃ 0.55 becomes constant.
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Figure 13: Square of the Riemann curvature tensor as function of the coarse-graining distance

r. For r ≫ 1 we obtain flat space. For r → 0 the squared curvature diverges, indicating the

development of a scalar curvature singularity.

that the RG-improvement process does not lead to the formation of a horizon. At this stage, it is

illustrative to investigate the square of the Riemann tensor, obtained from the full RG improved

line element. This quantity is shown in figure 13 and interpolates smoothly between vanishing

curvature for r ≫ 1 and a scalar curvature singularity at r = 0. Remarkably, RG improving

flat space including a cosmological constant also gives rise to a singularity. Thus the singularity

observed in the last section also appears in the absence of a black hole. Therefore it is important

to carefully distinguish between the classical black hole singularity and the singularity appearing

for the quantum improved black hole, since these two effects may come from a very different

physics origin.

The features of this singularity can be understood from investigating the r → 0 (or, equiv-

alently, the k → ∞) limit. In this limit the scale dependence of the cosmological constant is
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controlled by the NGFP, eq. (2.11). Substituting this scaling relation the improved line element

becomes

ds2∗ = −αdt2 + α−1 dr2 + r2 dΩ2
2 . (4.10)

where

α = 1− 1

3
λ∗ ξ

2 , (4.11)

is positive as long as ξ2 < 3/λ∗. This line element actually describes a conical singularity at

r = 0. Computing the square of the Riemann tensor based on the line element, one finds a scalar

curvature singularity at r = 0:5

RµναβR
µναβ =

4(α− 1)2

r4
. (4.12)

At the same time all components of Rµναβ and the Ricci tensor remain finite at r = 0, so that an

observer experiencing this singularity is not subject to diverging tidal forces. Also geodesics do

not experience singular behavior when passing r = 0. Thus, the singularity is of a much milder

form that the one encountered in the black hole case. This is readily understood from the fact

that in empty space, r is the only quantity which carries a unit, so conformal invariance of the

fixed point theory fixes (4.12). Based on on this observation we expect that the singular behavior

of the RG improved black hole rather reflects a microscopic feature of the quantum spacetime

than being related to black hole physics. It is tempting to speculate that the singular behavior

of the asymptotically safe quantum spacetime is actually related with the feature of dynamical

dimensional reduction, Ref. [98], along the ideas advocated in Refs. [99, 100, 101].

5 Further remarks

We conclude our review by briefly commenting on further developments contributing to the

understanding of black holes in asymptotically safe gravity.

The effect of higher-derivative terms

So far, the discussion of the quantum structure of black holes emerging within asymptotic safety

approximated the effective average action Γk by the Einstein-Hilbert truncation (2.2) including

one (Gk) or two (Gk and Λk) running couplings. Besides these terms, Γk will contain higher-

derivative terms (see Refs. [19, 49, 51, 52, 53, 102]) or terms of a “bi-metric” nature [103, 104].

The effect of higher-derivative terms on the RG improvement of the classical black hole solution

has been investigated in Ref. [26], which considered the analogue of the Schwarzschild-(A)dS

black hole solutions in higher-derivative gravity. While the incorporation of higher-derivative

terms gives rise to a richer class of solutions, one can choose boundary conditions that the line

element is of the form (4.1) where the cosmological constant becomes an effective cosmological

constant receiving contributions from the higher-derivative couplings.

5A similar behavior is expected from Regge calculus, where the discretized curvature scalar also diverges in the

continuum limit [].
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A conceptual difference of this work to asymptotic safety is that that the RG flow capturing the

scale dependence of the higher-derivative couplings is based on the perturbative beta-functions of

higher-derivative gravity [105, 106] incorporating the non-Gaussian fixed point values for Newtons

constant and the cosmological constant [107, 108]. In this case the higher-derivative couplings

logarithmically flow to zero at high energies, which does not reflect the flow to a non-Gaussian

fixed point as expected from non-perturbative calculations [53].

The cutoff-identification implemented in Ref. [26] is based on solving RG-improved equation

of motion. Imposing suitable boundary conditions, the resulting cutoff identification for large

values k has the asymptotic expansion

k(r) ∝ r−3/4 . (5.1)

Substituting the result in the scale-dependent line element, the radial function at short distances

becomes

f∗(r) = 1− c
√
r , (5.2)

where the constant c depends on the fixed point values of the coupling constants. The RG-

improved black hole solutions found in this way support a picture very similar to the one encoun-

tered in asymptotic safety:

• For large values r ≫ lPl solutions agree with the classical Schwarzschild-(A)dS solution.

• The curvature singularity at the center of the black hole is weaker but contrary to the

Schwarzschild case not resolved completely.6

• The RG improvement leads to the appearance of an event horizon and a Cauchy horizon,

changing the asymptotics of f(r) at short distances. As the mass of the black hole is lowered,

the two horizons approach each other and the coincide for a critical mass Mcr > 0.

• Once the black hole attains critical mass its horizon temperature becomes zero. Thus the

RG-improvement scheme based on (5.1) supports the formation of cold Planck mass black

hole remnants.

State counting based on Γk

A central goal any quantum theory of gravity should strive for is a microscopic explanation of

the Bekenstein-Hawking entropy (1.4) in terms of fundamental degrees of freedom. The natural

interpretation of this entropy within the context of the effective average action is clear: the

entropy arises from the statistical mechanics of the geometrical fluctuations about their respective

background. In Ref. [27] this proposal was made precise by proposing a state counting formula

based on Γk.

6In Ref. [26] this singular behavior was attributed to the inclusion of the higher-derivative terms. Following the

computation in the light of the findings presented in the last section, it is found that the effect also appears in the

absence of the higher-derivative terms and can be tracked to the inclusion of the cosmological constant.
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This procedure is based on self-consistent backgrounds which arise as solutions of the field

equations obtained when varying Γk with respect to the fluctuation fields7

δ

δhµν
Γk

[
h; ḡselfconk

]∣∣∣∣
h=0

= 0 . (5.3)

The relation (5.3) implies the expectation value of the fluctuation field, hµν vanishes for the

chosen background. For the “single-metric” ansätze discussed in section 2 this boils down to the

background satisfying the scale-dependent equations of motion obtained from Γk.
8

Starting from the exact integro-differential equation satisfied by Γk, Ref. [19], one can obtain

the following path integral representation of Γk[0, ḡ
selfcon
k ]

Zk ≡ e−Γk[0,ḡ
selfcon
k

] =

∫
DΦ̂ e−S̃[Φ̂,ḡselfcon

k
] e−∆kS[Φ̂] . (5.4)

Here Φ̂ denotes the fluctuation fields with vanishing fluctuation averages 〈φ̂〉 = 0 around the

background ḡselfconk , S̃ is the gravitational action supplemented by suitable gauge-fixing and ghost

terms, and ∆kS[Φ̂] ∼
∫
ddx

√
ḡ φ̂Rk φ̂ is an IR regulator providing a mass-type cutoff for fluctu-

ations with momentum p2 < k2. The r.h.s. thus resembles a partition function of a statistical

system with action S̃ cut off at the IR scale k. In this sense Zk provides a tool for ‘counting’ the

states (field modes) integrated out between infinity and the IR scale k.

It is illustrative to apply this state-counting formula to the Euclidean Schwarzschild solution

ds2 = f(r)dt2 + f(r)−1dr2 + r2dΩ2
2 (5.5)

with

f(r) = 1− rs
r

(5.6)

and r ∈ [rs,∞] and the time coordinate periodic with t ∈ [0, β] where β = 4πrs is the inverse

temperature of the black hole. This spacetime manifold M has two boundaries, the horizon at

the Schwarzschild radius rs and at infinity. In contrast to the “improved solution” techniques,

where rs = 2MGk is a scale-dependent quantity, the rs appearing in (5.6) is treated as a scale-

independent integration constant labeling the static and spherical symmetric solutions of (5.3).

The Zk for the Schwarzschild solution has been obtained in Ref. [27] and the extension to the

Nariai black hole has been carried out in Ref. [29]. In the Schwarzschild case, the solution (5.5)

is Ricci-flat, Rµν = 0, the only contribution to Zk comes from the boundary terms

− lnZk =Γk[h̄ = 0, ḡSS]

=− 2

16πG∂
k

∫

∂M
d3x

√
H̄

(
K̄ − K̄0

)
− 2

16πG∂
k

∫

∂M
d3x

√
H̄K̄0 .

(5.7)

7In the context of black holes and the AdS-CFT correspondence similar variational methods were used to

properly regularize and renormalize black hole solutions [109].
8In the context of “bi-metric” truncations, (5.3) implies that ḡselfconk solves the tadpole equation. We refer to

Ref. [27] for a detailed discussion of this point.
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Here the first term is the usual Gibbons-Hawking term, while the second term vanishes to leading

order in rs/r. Since the second term encodes the surface at infinity, is independent of the spacetime

curvature caused by the black hole and just encodes properties of flat space. Thus it will be

neglected. The evaluation of the first integral then yields

− lnZk =
βrs

4G∂
k

+ . . . =
A

4G∂
k

+ . . . . (5.8)

where A ≡ 4πr2s is the area of the (Euclidean) event horizon. Thus for an RG trajectory where

limk→0G
∂
k = G0 in the IR the formalism recovers the Bekenstein-Hawking area law as the leading

term. Moreover, the formalism can be extended to compute the corrections to the area law in a

systematic way.

The scale-dependent ADM mass

Using the Schwarzschild radius rs as the quantity that sets the typical length scale of the (Eu-

clidean) Schwarzschild geometry, one can introduce the scale-dependent ADM mass

Mk ≡ rs

2G∂
k

. (5.9)

Note that the effective average action formalism actually associates the boundary Newton’s con-

stant with the mass of the geometry. Using the flow of G∂
k from (2.22) and expanding the result

for small values k one finds

Mk =
[
1− |ω∂

4 | k
2

G∂
0

]
M0 . (5.10)

Thus Mk actually decreases for increasing values k and reaches zero near the Planck scale, set

by the IR-value of G∂
0 . In Ref. [27] it was argued that this behavior agrees with the expectation

of gravitational anti-screening: as a consequence of the definition (5.9) the running mass of any

material body decreases with increasing k, or decreasing distance, in agreement with the picture

of a cloud of virtual excitations surrounding the massive body put forward in section 2.

6 Conclusions and outlook

A crucial benchmark test for any quantum theory of gravity is the development of a consistent

quantum picture of black holes. This review summarizes the understanding of black hole physics

within the gravitational asymptotic safety program (QEG, see [11]). While the present picture

is far from being complete, renormalization group improvement methods have already provided

important insights on the leading quantum corrections to classical black hole physics expected

from asymptotic safety. In particular, there is the need of carefully distinguishing between the

cases where the improvement process includes the effect of a running cosmological constant or

not, since the two setups shine spotlights on very different physical phenomena and drastically

change the structure of black holes at subplanckian scales.

The picture of the renormalization group improved Schwarzschild black hole solution has

essentially been developed in Refs. [21, 22]. For distances r ≫ 2G0M the quantum-improved
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solutions coincide with their classical counterparts. For r ≪ 2G0M the improvement proce-

dure drastically alters the structure of the classical black hole, thereby confirming the common

expectation that the RG-improvement process resolves the black hole singularity, replacing the

black hole interior by a smooth de Sitter like spacetime patch. Moreover, the RG improvement

alters the horizon structure of the improved black hole solution such that the semi-classical black

hole evaporation process leads to the formation of a Planck mass cold remnant. Similar pictures

supporting the formation of a black hole remnant and the softening of the black hole singular-

ity have been derived from an RG improvement (based on one-loop beta functions) including

higher-derivative terms in Ref. [26] and the analysis of the RG improved from a thermodynamical

viewpoint [25].

This picture changes drastically by extending the analysis to the class of asymptotically (A)dS

black holes [29, 30] taking the scale-dependent cosmological constant into account. The flow

diagram shown in figure 1 thereby illustrates that the RG flow generates a cosmological constant,

even if it was not present in the classical low energy action. Remarkably, it is the running

cosmological constant that dominates the short distance behavior of the RG-improved black

hole. Including Λ reintroduces the classical black hole singularity that was resolved in the case

of the RG-improved Schwarzschild solution. The improved black hole solution obtained at the

NGFP has precisely the same form as its classical counterpart albeight with the role of the terms

including Newton’s constant and the cosmological constant interchanged. This picture calls into

question the previous conclusion that black hole evaporation in asymptotic safety produces black

hole remnants, as the RG-improved light black hole would evaporate in a same way as its classical

counterpart.

The recurrence of a singularity in the RG-improved black hole is rather counterintuitive from

a quantum gravity point of view: after all one motivation for developing a theory of quantum

gravity stems from the desire to find a resolution of the singularities appearing within classical

general relativity. Notably, the application of the RG improvement methods to flat space, for

the first time carried out in section 4.3, introduces a similar singularity through the improvement

process. This makes it conceivable, that the “quantum singularity” has no direct connection to

black hole physics but reflects a more general phenomenon. Given the rather mild singularity

appearing in the RG improvement process makes it tempting to speculate that this feature realizes

the dynamical dimensional reduction of asymptotically safe quantum spacetime, which has been

previously observed based on the graviton propagator [43] and later on refined using the spectral

dimension [39, 40, 41, 42] at the level of the quantum improved geometry.

At this stage it is clear that the investigation of black holes within the gravitational asymp-

totic safety program is still at its beginning. The results obtained so far rely heavily on RG

improvement techniques applied to classical solutions and on Hawking’s semi-classical analysis of

the thermodynamical properties of black holes in curved spacetime. Even at this level it is already

clear that the physics of black holes within asymptotic safety is much richer than initially thought

and probably closely intertwined with the microscopic structure of spacetime itself. Unraveling

dynamical questions concerning the dynamical evaporation of Planck size black holes or shedding
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light on the microscopic origin of the black hole entropy will certainly require new techniques

that go beyond RG improvements.

After all, from the experience with the Uehling potential, Ref. [72], in the context of QED, one

expects the improvement techniques to work best close to the classical regime. The transition

to the classical regime is in the improvement techniques reflected by the fact that for large

radius r the improved black holes become indistinguishable from their classical counterparts. The

improvement techniques are, however, expected to be less reliable in the deep quantum regime

(small r). Moreover, since black holes involve more than one typical dimensionful scale (e.g., the

mass of the black hole and the distance from its center) leads to a certain freedom in identifying the

RG scale with a physical scale. The uncertainty introduced by the ambiguity of the scale setting

procedure may lead to different predictions for small values of r. A natural next step towards

refining the present picture will have to include the interaction between gravitational and matter

sector in order to verify to what extend the semi-classical analysis based on quantum field theory

in a curved spacetime carries over to the asymptotically safe quantum black holes. We expect that

the gravitational effective average action Γk together with its functional renormalization group

equation constructed in Ref. [19] will continue to provide guidance for addressing these exciting

questions in the future.
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