75 research outputs found

    New sol-gel-derived magnetic bioactive glass-ceramics containing superparamagnetic hematite nanocrystals for hyperthermia application

    Get PDF
    Although the three main phases of iron oxide – hematite, maghemite, and magnetite – exhibit superparamagnetic properties at the nanoscale, only maghemite and magnetite phases have been explored in magnetic bioactive glass-ceramics aimed at applications in cancer treatment by hyperthermia. In this work, it is reported for the first time the superparamagnetic properties of hematite nanocrystals grown in a 58S bioactive glass matrix derived from sol-gel synthesis. The glass-ceramics are based on the (100-x)(58SiO2-33CaO-9P2O5)-xFe2O3 system (x = 10, 20 and 30 wt%). A thermal treatment leads to the growth of hematite (α-Fe2O3) nanocrystals, conferring superparamagnetic properties to the glass-ceramics, which is enough to produce heat under an external alternating magnetic field. Besides, the crystallization does not inhibit materials bioactivity, evidenced by the formation of calcium phosphate onto the glass-ceramic surface upon soaking in simulated body fluid. Moreover, their cytotoxicity is similar to other magnetic bioactive glass-ceramics reported in the literature. Finally, these results suggest that hematite nanocrystals' superparamagnetic properties may be explored in multifunctional glass-ceramics applied in bone cancer treatment by hyperthermia allied to bone regeneration

    Role Of Oxygen Vacancies In The Magnetic And Dielectric Properties Of The High-dielectric-constant System Cacu3 Ti4 O12: An Electron-spin Resonance Study

    Get PDF
    We report experiments of electron spin resonance (ESR) of Cu2+ in polycrystalline samples of CaCu3 Ti4 O12 post-annealed in different atmospheres. After being synthesized by solid state reaction, pellets of CaCu3 Ti4 O12 were annealed for 24 h at 1000°C under air, Ar or O2. Our temperature dependent ESR data revealed for all samples nearly temperature independent g value (2.15(1)) and linewidth for T TN ≈25 K. However, the values of ESR linewidth are strongly affected by the oxygen content in the sample. For instance, argon post-annealed samples show a much larger linewidth than the O2 or air post-annealed samples. We attribute this broadening to an increase of the dipolar homogeneous broadening of the Cu2+ ESR lines due to the presence of oxygen vacancies which induce an S=1 2 spin inside the TiO6 octahedra. Correlation between a systematic dependence of the ESR linewidth on the oxygen content and the high dielectric constant of these materials is addressed. Also, ESR, magnetic susceptibility, and specific heat data for a single crystal of CaCu3 Ti4 O12 and for polycrystals of CdCu3 Ti4 O12 are reported. © 2006 The American Physical Society.7322Subramanian, M.A., Li, D., Duan, N., Reisner, B., Sleight, A.W., (2000) J. Solid State Chem., 151, p. 323. , JSSCBI 0022-4596 10.1006/jssc.2000.8703Ramirez, A.P., Subramanian, M.A., Gardel, M., Blumberg, G., Li, D., Vogt, T., Shapiro, S.M., (2000) Solid State Commun., 151, p. 217. , SSCOA4 0038-1098Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Ramirez, A.P., (2001) Science, 293, p. 673. , SCIEAS 0036-8075 10.1126/science.292.5517.673Lunkenheimer, P., Bobnar, V., Pronin, A.V., Ritus, A.I., Volkov, A.A., Loidl, A., (2002) Phys. Rev. B, 66, p. 052105. , PRBMDO 0163-1829 10.1103/PhysRevB.66.052105Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Subramanian, M.A., Ramirez, A.P., (2003) Phys. Rev. B, 67, p. 092106. , PRBMDO 0163-1829 10.1103/PhysRevB.67.092106Sinclair, D.C., Admas, T.B., Morrison, F.D., West, A.R., (2002) Appl. Phys. Lett., 80, p. 2153. , APPLAB 0003-6951 10.1063/1.1463211Giulloto, E., Mozzati, M.C., Azzoni, C.B., Massarotti, V., Bini, M., (2004) Ferroelectrics, 298, p. 61. , FEROA8 0015-0193Mozzati, M.C., Azzoni, C.B., Capsoni, D., Bini, M., Massarotti, V., (2003) J. Phys.: Condens. Matter, 15, p. 7365. , JCOMEL 0953-8984 10.1088/0953-8984/15/43/018Subramanian, M.A., Sleight, A.W., (2002) Solid State Sci., 4, p. 347. , SSSCFJ 1293-2558 10.1016/S1293-2558(01)01262-6Fang, L., Shen, M., Cao, W., (2004) J. Appl. Phys., 95, p. 6483. , JAPIAU 0021-8979 10.1063/1.1728308Koitzsch, A., Blumberg, G., Gozar, A., Dennis, B., Ramirez, A.P., Trebst, S., Wakimoto, S., (2002) Phys. Rev. B, 65, p. 052406. , PRBMDO 0163-1829 10.1103/PhysRevB.65.052406Bosman, A.J., Van Daal, H.J., (1970) Adv. Phys., 19, p. 1. , ADPHAH 0001-8732 10.1080/00018737000101071Lenjer, S., Schirmer, O.F., Hesse, H., Kool, T.W., (2002) Phys. Rev. B, 66, p. 165106. , PRBMDO 0163-1829 10.1103/PhysRevB.66.165106Bednorz, J.G., Mller, K.A., (1988) Rev. Mod. Phys., 60, p. 585. , RMPHAT 0034-6861 10.1103/RevModPhys.60.585Salamon, M.B., Jaime, M., (2001) Rev. Mod. Phys., 73, p. 583. , RMPHAT 0034-6861 10.1103/RevModPhys.73.583Scharfschwerdt, R., Mazur, A., Schirmer, O.F., Hesse, H., Mendricks, S., (1996) Phys. Rev. B, 54, p. 15284. , PRBMDO 0163-1829 10.1103/PhysRevB.54.15284Laguta, V.V., Slipenyuk, A.M., Bykov, I.P., Glinchuck, M.D., Maglione, M., Michau, D., Rosa, J., Jastrabik, L., (2005) Appl. Phys. Lett., 87, p. 022903. , APPLAB 0003-6951 10.1063/1.1954900Cohn, J.L., Peterca, M., Neumeier, J.J., (2005) J. Appl. Phys., 97, p. 034102. , JAPIAU 0021-8979 10.1063/1.1834976Abragam, A., Bleaney, B., (1670) Electron Paramagnetic Resonance of Transition Ions, , Clarendon, OxfordPoole, C.P., Farach, H.A., (1971) Relaxation in Magnetic Resonance, , Academic, New YorkVan Vleck, J.H., (1948) Phys. Rev., 74, p. 1168. , PHRVAO 0031-899X 10.1103/PhysRev.74.1168Anderson, P.W., Weiss, P.R., (1953) Rev. Mod. Phys., 25, p. 269. , RMPHAT 0034-6861 10.1103/RevModPhys.25.269Wu, L., Zhu, Y., Park, S., Shapiro, S., Shirane, G., Tafto, J., (1953) Rev. Mod. Phys., 25, p. 269. , RMPHAT 0034-6861 10.1103/RevModPhys.25.26

    Crystal Structure And Physical Properties Of Gd3co 4sn13 Intermetallic Antiferromagnet

    Get PDF
    We have synthesized single crystalline samples of Gd3 Co4 Sn13 intermetallic compound using a Sn-flux method. This compound crystallizes with a cubic Yb3 Co4 Sn13 -type structure, space group Pm-3n, which has 40 atoms per unit cell. Measurements of the magnetic susceptibility, heat capacity, electrical resistivity, and electron spin resonance (ESR) revealed that Gd3 Co4 Sn13 is a metallic Curie-Weiss paramagnet at high temperature and presents an antiferromagnetic ordering below TN =14.5 K. In the paramagnetic state, a single Gd3+ ESR line with a nearly temperature independent g∼2.005 (2) is observed, and its linewidth follows a Korringa-like behavior as a function of temperature. From the Korringa rate (ΔHΔT∼4 OeK) and g -shift (Δg∼0.012) obtained from the ESR experiments combined with the magnetic susceptibility and specific heat data for Gd3 Co4 Sn13, we have extracted the exchange parameters between the Gd3+ local moments and the conduction-electrons (c-e) in this compound. This exchange parameter Jfs ≈10 meV was found to be c-e wave-vector independent and the electronic structure of Gd3 Co4 Sn13 has a single band character. © 2006 American Institute of Physics.998Remeika, J.P., (1980) Solid State Commun., 34, p. 923Remeika, J.P., (1982) Solid State Commun., 42, p. 97Sato, H., (1993) Physica B, 188, p. 630Hundley, M.F., (2002) Phys. Rev. B, 65, p. 024401Israel, C., (2005) Physica B, 359-361, p. 251Cornelius, A., Physica BPagliuso, P.G., (2001) Phys. Rev. B, 63, p. 054426Granado, E., (2004) Phys. Rev. B, 69, p. 144411Davidov, D., Maki, K., Orbach, R., Rettori, C., Chock, E.P., (1973) Solid State Commun., 12, p. 621Feher, G., Kip, A.F., (1955) Phys. Rev., 98, p. 337. , 0031-899X 10.1103/PhysRev.98.337Dyson, F.J., (1955) Phys. Rev., 98, p. 349Yosida, K., (1957) Phys. Rev., 106, p. 893Korringa, J., (1950) Physica (Amsterdam), 16, p. 601Rettori, C., Kim, H.M., Chock, E.P., Davidov, D., (1974) Phys. Rev. B, 10, p. 1826Abragam, A., Bleaney, B., (1970) EPR of Transition Ions, , Clarendon, OxfordMoriya, T., (1963) J. Phys. Soc. Jpn., 18, p. 516Narath, A., (1967) Phys. Rev., 163, p. 232Pagliuso, P.G., (1999) Phys. Rev. B, 60, p. 13515Bittar, E.M.

    Magnetic properties of the frustrated AFM spinel ZnCr_2O_4 and the spin-glass Zn_{1-x}Cd_xCr_2O_4 (x=0.05,0.10)

    Full text link
    The TT-dependence (2- 400 K) of the electron paramagnetic resonance (EPR), magnetic susceptibility, χ(T)\chi (T), and specific heat, Cv(T)C_{v}(T), of the normalnormal antiferromagnetic (AFM) spinel ZnCr2_{2}O4_{4} and the spin-glass (SG) Zn1x_{1-x}Cdx_{x}Cr2_{2}O4_{4} (x=0.05,0.10x=0.05,0.10) is reported. These systems behave as a strongly frustrated AFM and SG with % T_{N} TG12 \approx T_{G}\approx 12 K and -400 K ΘCW500\gtrsim \Theta_{CW}\gtrsim -500 K. At high-TT the EPR intensity follows the χ(T)\chi (T) and the gg-value is TT-independent. The linewidth broadens as the temperature is lowered, suggesting the existence of short range AFM correlations in the paramagnetic phase. For ZnCr2_{2}O4_{4} the EPR intensity and χ(T)\chi (T) decreases below 90 K and 50 K, respectively. These results are discussed in terms of nearest-neighbor Cr3+^{3+} (S =3/2=3/2%) spin-coupled pairs with an exchange coupling of J/k| J/k| \approx 50 K. The appearance of small resonance modes for T17T\lesssim 17 K, the observation of a sharp drop in χ(T)\chi (T) and a strong peak in Cv(T)C_{v}(T) at TN=12T_{N}=12 K confirms, as previously reported, the existence of long range AFM correlations in the low-TT phase. A comparison with recent neutron diffraction experiments that found a near dispersionless excitation at 4.5 meV for TTNT\lesssim T_{N} and a continuous gapless spectrum for TTNT\gtrsim T_{N}, is also given.Comment: 17 pages, 8 figures, 1 Table. Submitted to Physical Review

    Endothelin-1 as a neuropeptide: neurotransmitter or neurovascular effects?

    Get PDF
    Endothelin-1 (ET-1) is an endothelium-derived peptide that also possesses potent mitogenic activity. There is also a suggestion the ET-1 is a neuropeptide, based mainly on its histological identification in both the central and peripheral nervous system in a number of species, including man. A neuropeptide role for ET-1 is supported by studies showing a variety of effects caused following its administration into different regions of the brain and by application to peripheral nerves. In addition there are studies proposing that ET-1 is implicated in a number of neural circuits where its transmitter affects range from a role in pain and temperature control to its action on the hypothalamo-neurosecretory system. While the effect of ET-1 on nerve tissue is beyond doubt, its action on nerve blood flow is often ignored. Here, we review data generated in a number of species and using a variety of experimental models. Studies range from those showing the distribution of ET-1 and its receptors in nerve tissue to those describing numerous neurally-mediated effects of ET-1

    Exact solution of the Falicov-Kimball model with dynamical mean-field theory

    Full text link
    The Falicov-Kimball model was introduced in 1969 as a statistical model for metal-insulator transitions; it includes itinerant and localized electrons that mutually interact with a local Coulomb interaction and is the simplest model of electron correlations. It can be solved exactly with dynamical mean-field theory in the limit of large spatial dimensions which provides an interesting benchmark for the physics of locally correlated systems. In this review, we develop the formalism for solving the Falicov-Kimball model from a path-integral perspective, and provide a number of expressions for single and two-particle properties. We examine many important theoretical results that show the absence of fermi-liquid features and provide a detailed description of the static and dynamic correlation functions and of transport properties. The parameter space is rich and one finds a variety of many-body features like metal-insulator transitions, classical valence fluctuating transitions, metamagnetic transitions, charge density wave order-disorder transitions, and phase separation. At the same time, a number of experimental systems have been discovered that show anomalies related to Falicov-Kimball physics [including YbInCu4, EuNi2(Si[1-x]Gex)2, NiI2 and TaxN].Comment: 51 pages, 40 figures, submitted to Reviews of Modern Physic

    Variability and discontinuity of the pathognomonic systemic effects caused by Walker 256 tumor progression in rats

    No full text
    Cancer pathognomonic systemic effects (PSE) have high individual variability, For this reason present data were collected daily and synchronized considering four main points: inoculation day, onset of PSE, aggravation and death, The subclinical period free of PSE ranged between 15.7+/-2.2 days, the clinical period was less variable, 8.9+/-0.5 days, divided in a moderate and a grave phase of nearly the same length, PSE involved disturbances of fundamental homeostatic regulations: appetite, sodium, water, immune, etc, PSE triggering correlated highly with survival (r(2)=0.95, P<0.01), but poorly with primary tumor growth, and it was anticipated by metastases from 20.5+/-2.6 to 10.6+/-1.1 days (P<0.01), After multifocal simultaneous inoculations, PSE triggering was anticipated to 4.2+/-0.2 days (marked reduction of individual variability), in the presence of small total-tumor masses, absence of macroscopic metastases, and without changes in the following clinical period features, PSE triggering seems to be a major prognostic indicator probably related to multifocal tumor growth.81537037
    corecore