40 research outputs found
Producing High Concentrations of Hydrogen in Palladium via Electrochemical Insertion from Aqueous and Solid Electrolytes
Metal hydrides are critical materials in numerous technologies including
hydrogen storage, gas separation, and electrocatalysis. Here, using Pd-H as a
model metal hydride, we perform electrochemical insertion studies of hydrogen
via liquid and solid state electrolytes at 1 atm ambient pressure, and achieve
H:Pd ratios near unity, the theoretical solubility limit. We show that the
compositions achieved result from a dynamic balance between the rate of
hydrogen insertion and evolution from the Pd lattice, the combined kinetics of
which are sufficiently rapid that operando experiments are necessary to
characterize instantaneous PdHx composition. We use simultaneous
electrochemical insertion and X-ray diffraction measurements, combined with a
new calibration of lattice parameter versus hydrogen concentration, to enable
accurate quantification of the composition of electrochemically synthesized
PdHx. Furthermore, we show that the achievable hydrogen concentration is
severely limited by electrochemomechanical damage to the palladium and/or
substrate. The understanding embodied in these results helps to establish new
design rules for achieving high hydrogen concentrations in metal hydrides.Comment: 38 page
Apparatus for Operando X-ray Diffraction of Fuel Electrodes in High Temperature Solid State Electrochemical Cells
Characterizing electrochemical energy conversion devices during operation is
an important strategy for correlating device performance with the properties of
cell materials under real operating conditions. While operando characterization
has been used extensively for low temperature electrochemical cells, these
techniques remain challenging for solid oxide electrochemical cells due to the
high temperatures and reactive gas atmospheres these cells require. Operando
X-ray diffraction measurements of solid oxide electrochemical cells could
detect changes in the crystal structure of the cell materials, which can be
useful for understanding degradation process that limit device lifetimes, but
the experimental capability to perform operando X-ray diffraction on the fuel
electrodes of these cells has not been demonstrated. Here we present the first
experimental apparatus capable of performing X-ray diffraction measurements on
the fuel electrodes of high temperature solid oxide electrochemical cells
during operation under reducing gas atmospheres. We present data from an
example experiment with a model solid oxide cell to demonstrate that this
apparatus can collect X-ray diffraction spectra during electrochemical cell
operation at high temperatures in humidified H2 gas. Measurements performed
using this apparatus can reveal new insights about solid oxide fuel cell and
solid oxide electrolyzer cell degradation mechanisms to enable the design of
durable, high performance devices.Comment: 17 page
Gallium-Doped Li 7
Owing to their high conductivity, crystalline Li7–3xGaxLa3Zr2O12 garnets are promising electrolytes for all-solid-state lithium-ion batteries. Herein, the influence of Ga doping on the phase, lithium-ion distribution, and conductivity of Li7–3xGaxLa3Zr2O12 garnets is investigated, with the determined concentration and mobility of lithium ions shedding light on the origin of the high conductivity of Li7–3xGaxLa3Zr2O12. When the Ga concentration exceeds 0.20 Ga per formula unit, the garnet-type material is found to assume a cubic structure, but lower Ga concentrations result in the coexistence of cubic and tetragonal phases. Most lithium within Li7–3xGaxLa3Zr2O12 is found to reside at the octahedral 96h site, away from the central octahedral 48g site, while the remaining lithium resides at the tetrahedral 24d site. Such kind of lithium distribution leads to high lithium-ion mobility, which is the origin of the high conductivity; the highest lithium-ion conductivity of 1.46 mS/cm at 25 °C is found to be achieved for Li7–3xGaxLa3Zr2O12 at x = 0.25. Additionally, there are two lithium-ion migration pathways in the Li7–3xGaxLa3Zr2O12 garnets: 96h-96h and 24d-96h-24d, but the lithium ions transporting through the 96h-96h pathway determine the overall conductivity
Apparatus for operando x-ray diffraction of fuel electrodes in high temperature solid oxide electrochemical cells
© 2019 Author(s). Characterizing electrochemical energy conversion devices during operation is an important strategy for correlating device performance with the properties of cell materials under real operating conditions. While operando characterization has been used extensively for low temperature electrochemical cells, these techniques remain challenging for solid oxide electrochemical cells due to the high temperatures and reactive gas atmospheres these cells require. Operando X-ray diffraction measurements of solid oxide electrochemical cells could detect changes in the crystal structure of the cell materials, which can be useful for understanding degradation process that limit device lifetimes, but the experimental capability to perform operando X-ray diffraction on the fuel electrodes of these cells has not been demonstrated. Here we present the first experimental apparatus capable of performing X-ray diffraction measurements on the fuel electrodes of high temperature solid oxide electrochemical cells during operation under reducing gas atmospheres. We present data from an example experiment with a model solid oxide cell to demonstrate that this apparatus can collect X-ray diffraction patterns during electrochemical cell operation at high temperatures in humidified H 2 gas. Measurements performed using this apparatus can reveal new insights about solid oxide fuel cell and solid oxide electrolyzer cell degradation mechanisms to enable the design of durable, high performance devices