7 research outputs found

    A 3-D microscale model for Co2 GasTransport in tomato leaves during photosynthesis

    Get PDF
    Exchange of CO2 in tomato (Solanum lycopersicum L.) leaves was modelled using combined gas diffusion and photosynthesis kinetics in a real 3-D geometric representation of the cellular microstructure, obtained by synchrotron radiation X-ray microtomography. The microscale model for gas exchange accounted for diffusive mass transport of CO2 in the intercellular space (pores), the cell wall network and the intracellular liquid of cells. The photosynthesis kinetics described by the extended Farquhar, von Caemmerer & Berry model were coupled to the gas exchange inside the mesophyll cells. The coupled model was validated by means of gas exchange and chlorophyll fluorescence measurements. The model provides detailed insight into the mechanisms of gas exchange and insight into the effects of changes in ambient CO2 concentration or photon flux density on stomatal and mesophyll conductance. The resistance to diffusion of CO2 from the intercellular air spaces within the leaf through the mesophyll to the sites of carboxylation during photosynthesis depended on the 3-D microstructure of leaf tissue. The model represents an important step forward to study CO2 diffusion coupled to photosynthesis at the leaf tissue level, taking into account its actual 3-D microstructure

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Virtual microstructural leaf tissue generation based on cell growth modeling

    No full text
    A cell growth algorithm for virtual leaf tissue generation is presented based on the biomechanics of plant cells in tissues. The algorithm can account for typical differences in epidermal layers, palisade mesophyll layer and spongy mesophyll layer which have characteristic differences in the shape of cells, arrangement of cells and void fractions present in each layer. The cell is considered as a closed thin walled structure, maintained in tension by turgor pressure. The cell walls are modelled as linear elastic elements which obey Hooke's law. A Voronoi tessellation was used to generate the initial topology of the cells in the spongy mesophyll layer. Then two layers of brick structured cells are added to the top of it to represent the palisade mesophyll and upper epidermis and a single layer is added at bottom of the Voronoi tessellation to represent the lower epidermal layer. Intercellular air spaces are generated by separating the Voronoi cells along the edges starting from where three Voronoi cells are in contact (schizogenous origin) and/or by deleting some of the Voronoi cells (lysigenous origin). Cell expansion then results from turgor pressure acting on the yielding cell wall material. To find the sequence of positions of each vertex and thus the shape of the tissue with time, a system of differential equations for the positions and velocities of each vertex is established and solved using the ordinary differential equation solver in MatLab. Statistical comparison of the cellular characteristics with 2D cross-sectional slices of real leaf tissue of tomato is excellent. The virtual tissues can be used to systematically study effects of leaf structure on water and gas exchange.</p

    Exploring anatomical controls of C<sub>4</sub> leaf photosynthesis using a 3D reaction-diffusion model

    No full text
    C4 plants such as maize (Zea mays L.), sugarcane (Saccharum officinarum L.) and sorghum [Sorghum bicolor (L.) Moench.] photosynthesize at a high rate due to a CO2 concentration mechanism (CCM) that accumulates CO2 to saturating concentrations around the carboxylation site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Transport of CO2 inside a leaf and, therefore, the CCM, is affected by leaf microstructure. Gas transport models with a realistic leaf microstructure help to assess the significance of anatomical features of C4 plants quantitatively for effective CCM. One- and two-dimensional gas transport models, when applied to analyze the gas diffusion in leaves, understate the three-dimensional nature. Here, we present the first 3D reaction-diffusion model for photosynthesis of a C4 leaf. Equations of CO2 transport and bicarbonate diffusion combined with a biochemical model of C4 photosynthesis were discretized over the 3D geometry of a maize leaf tissue. The model could describe the trends in responses of photosynthesis to light and CO2. The CO2 profile in the leaf microstructure was highly heterogeneous. The model suggests that rapid diffusion of CO2 to mesophyll cytosol is essential to achieve a high rate of photosynthesis.</p

    Modeling the relationship between CO2 assimilation and leaf anatomical properties in tomato leaves

    No full text
    The CO2 concentration near Rubisco and, therefore, the rate of CO2 assimilation, is influenced by both leaf anatomical factors and biochemical processes. Leaf anatomical structures act as physical barriers for CO2 transport. Biochemical processes add or remove CO2 along its diffusion pathway through mesophyll. We combined a model that quantifies the diffusive resistance for CO2 using anatomical properties, a model that partitions this resistance and an extended version of the Farquhar–von Caemmerer–Berry model. We parametrized the model by gas exchange, chlorophyll fluorescence and leaf anatomical measurements from three tomato cultivars. There was generally a good agreement between the predicted and measured light and CO2 response curves. We did a sensitivity analysis to assess how the rate of CO2 assimilation responds to changes in various leaf anatomical properties. Next, we conducted a similar analysis for assumed diffusive properties and curvature factors. Some variables (diffusion pathway length in stroma, diffusion coefficient of the stroma, curvature factors) substantially affected the predicted CO2 assimilation. We recommend more research on the measurements of these variables and on the development of 2-D and 3-D gas diffusion models, since these do not require the diffusion pathway length in the stroma as predefined parameter

    Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis

    No full text
    We present a combined three-dimensional (3-D) model of light propagation, CO2 diffusion and photosynthesis in tomato (Solanum lycopersicum L.) leaves. The model incorporates a geometrical representation of the actual leaf microstructure that we obtained with synchrotron radiation X-ray laminography, and was evaluated using measurements of gas exchange and leaf optical properties. The combination of the 3-D microstructure of leaf tissue and chloroplast movement induced by changes in light intensity affects the simulated CO2 transport within the leaf. The model predicts extensive reassimilation of CO2 produced by respiration and photorespiration. Simulations also suggest that carbonic anhydrase could enhance photosynthesis at low CO2 levels but had little impact on photosynthesis at high CO2 levels. The model con¿rms that scaling of photosynthetic capacity with absorbed light would improve ef¿ciency of CO2 ¿xation in the leaf, especially at low light intensity
    corecore