6 research outputs found

    On-Orbit Verification of GLM Navigation on GOES-16

    Get PDF
    The GOES-R flight project has developed the Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) to perform independent INR evaluations of the optical instruments on the GOES-R series spacecraft. In this paper, we document the development of navigation (NAV) evaluation capabilities within IPATS for the Geostationary Lightning Mapper (GLM). We also discuss the post-processing quality filtering developed for GLM NAV, and present example results for several GLM datasets. Initial results suggest that GOES-16 GLM is compliant with navigation requirements

    Increased Operational Availability and Simplified Operations Using Dither Gyro Scale Factor Calibration

    Get PDF
    The traditional approach to on-orbit gyro scale factor calibration has been to perform large angle rotations about each gyro axis. The maneuvers require the science instruments to be taken offline, reducing operational availability and require a significant amount of interaction from the ground. To increase operational availability and to reduce the burden on mission operators, a novel approach to gyro scale factor calibration was developed, modeled and successfully demonstrated on the Geostationary Operational Environmental Satellite (GOES-16) to estimate gyro scale factor errors to within 1500 parts per million (ppm) without taking the science instruments offline

    Initial Navigation Alignment of Optical Instruments on GOES-R

    Get PDF
    Post-launch alignment errors for the Advanced Baseline Imager (ABI) and Geospatial Lightning Mapper (GLM) on GOES-R may be too large for the image navigation and registration (INR) processing algorithms to function without an initial adjustment to calibration parameters. We present an approach that leverages a combination of user-selected image-to-image tie points and image correlation algorithms to estimate this initial launch-induced offset and calculate adjustments to the Line of Sight Motion Compensation (LMC) parameters. We also present an approach to generate synthetic test images, to which shifts and rotations of known magnitude are applied. Results of applying the initial alignment tools to a subset of these synthetic test images are presented. The results for both ABI and GLM are within the specifications established for these tools, and indicate that application of these tools during the post-launch test (PLT) phase of GOES-R operations will enable the automated INR algorithms for both instruments to function as intended

    Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Get PDF
    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results
    corecore