457 research outputs found

    Experimental temperature profiles in timber elements subjected to fire conditions

    Get PDF
    Safe use of wood for modern structural applications requires a precise definition of the in-depth evolution of temperatures and degradation rates (mass loss rates). A series of experiments have been carried out with the main aim of developing a dependable procedure to obtain well characterized temperature distributions and mass loss rates in wood specimens subjected to radiant energy within magnitudes typical of fires. The measurements have been then compared against the results of a simplified numerical model of the pyrolysis process. The results show a good agreement between the model and the experiments for the initial heating stages. However, the agreement becomes poorer at longer exposure times and increased depths from the exposed surface

    A simplified analytical model for radiation dominated ignition of solid fuels exposed to multiple non-steady heat fluxes

    Get PDF
    Heat fluxes from fires are strongly time-dependent. Historically, the thermal ignition theory in its classical form has neglected this time dependency until recent years, where theories have been developed to include time-varying incident heat fluxes. This article proposes a simplified general model formulation for the heating of solid fuels exposed to four different heat flux behaviors, considering the penetration of radiation into the medium. The incident heat flux cases developed where: Constant, Linear, Exponential and Polynomial, which represent different situations related to structural and wildland fires. The analytical models consider a spatially averaged medium temperature and exact and approximate solutions are presented, based on the critical ignition temperature criterion, which are valid for solids of any optical thickness. The results were validated by comparison with various models presented in the literature, where the model granted in this work was capable to adjust to all of them, especially when high heat fluxes are involved. Therefore, the proposed model acquires a significant engineering utility since it provides a single model to be used as a general and versatile tool to predict the ignition delay time in a manageable way for solid fuels exposed to different fire conditions

    MBE grown preferentially oriented CdMgO alloy on m- and c-plane sapphire substrates

    Full text link
    Unlike other II-VI semiconductors, CdO-based transparent oxide has great potential application for the fabrication of many optoelectronic devices. In this work, we study the growth of CdxMg1-xO alloys on m- and on c-plane sapphire substrates in Cd-rich to Mg-rich conditions using the plasma-assisted molecular beam epitaxy method. A structural and morphological study of CdMgO random alloys was carried out using X-ray diffraction and Atomic Force Microscope (AFM) techniques whereas composition analysis was done by Energy-dispersive X-ray (EDX) spectroscopy method. The optical properties of thin films were investigated by UV-Vis spectroscopy at room temperature. X-ray analysis confirmed the presence of cubic rock salt structure with CdMgO crystallographic orientation on c-plane sapphire and CdMgO preferential orientation on m-plane sapphire. The surface roughness was measured by the AFM. From the absorption curve, the optical bandgaps were determined using Tauc relation and it was found that the bandgap of films is influenced by the incorporation of Mg2+ ions into the CdO lattice. Bowing parameter was calculated both for samples on m- and c- sapphires.Comment: 19 pages, 11 figure

    Fermi level dependence of magnetism and magnetotransport in the magnetic topological insulators Bi2_{2}Te3_{3} and BiSbTe3_{3} containing self-organized MnBi2_{2}Te4_{4} septuple layers

    Full text link
    The magnetic coupling mechanisms underlying ferromagnetism and magnetotransport phenomena in magnetically doped topological insulators have been a central issue to gain controlled access to the magneto-topological phenomena such as quantum anomalous Hall effect and topological axion insulating state. Here, we focus on the role of bulk carriers in magnetism of the family of magnetic topological insulators, in which the host material is either Bi2_{2}Te3_{3} or BiSbTe3_{3}, containing Mn self-organized in MnBi2_{2}Te4_{4} septuple layers. We tune the Fermi level using the electron irradiation technique and study how magnetic properties vary only through the change in carrier density. Ferromagnetic resonance spectroscopy excludes bulk magnetism based on a carrier-mediated process. Furthermore, the magnetotransport measurements show that the anomalous Hall effect is dominated by the intrinsic and dissipationless Berry-phase driven mechanism, with the Hall resistivity enhanced near the bottom/top of the conduction/valence band, due to the Berry curvature which is concentrated near the avoided band crossings. These results demonstrate that the anomalous Hall effect can be effectively managed, maximized, or turned off, by adjusting the Fermi level.Comment: 11 pages, 7 figure

    Effect of rapid thermal annealing on short period {CdO/ZnO}m SLs grown on m-Al2O3

    Full text link
    Here, we report on the characterization of {CdO/ZnO}m superlattice structures (SLs) grown by plasma assisted molecular beam epitaxy. The properties of as-grown and annealed SLs deposited on m-oriented sapphire were investigated by secondary ion mass spectrometry (SIMS) and scanning electron microscopy (SEM) in cathodoluminescence (CL) and energy dispersive X-ray modes. The deformation of the crystallographic structure of SLs was observed after rapid thermal annealing at 900{\deg}C in oxygen flow due to migration and segregation of Cd atoms. SIMS measurements revealed that the distributions of cadmium in the annealed samples depend on the thicknesses of the CdO and ZnO sublayers in the as grown superlattice structures. Depth-resolved CL measurements showed that shifting of the near band edge emission peaks is closely related to the Cd profiles measured with SIMS.Comment: 14 pages, 6 figure

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps
    corecore