4,209 research outputs found

    Helping Students Master Concepts in Mechanics by Graphing with Spreadsheets

    Get PDF
    An example of a curricular activity to help students master concepts in mechanics is presented. Students measure positions and times of movements using calculators, and construct graphs using spreadsheets. Students learn to connect concepts in mechanics and reinforce them following a spiral approach of increasing complexity. Comments from students about the activity are also presented

    Mean field theory of assortative networks of phase oscillators

    Full text link
    Employing the Kuramoto model as an illustrative example, we show how the use of the mean field approximation can be applied to large networks of phase oscillators with assortativity. We then use the ansatz of Ott and Antonsen [Chaos 19, 037113 (2008)] to reduce the mean field kinetic equations to a system of ordinary differential equations. The resulting formulation is illustrated by application to a network Kuramoto problem with degree assortativity and correlation between the node degrees and the natural oscillation frequencies. Good agreement is found between the solutions of the reduced set of ordinary differential equations obtained from our theory and full simulations of the system. These results highlight the ability of our method to capture all the phase transitions (bifurcations) and system attractors. One interesting result is that degree assortativity can induce transitions from a steady macroscopic state to a temporally oscillating macroscopic state through both (presumed) Hopf and SNIPER (saddle-node, infinite period) bifurcations. Possible use of these techniques to a broad class of phase oscillator network problems is discussed.Comment: 8 pages, 7 figure

    Coexisting chaotic and multi-periodic dynamics in a model of cardiac alternans

    Full text link
    The spatiotemporal dynamics of cardiac tissue is an active area of research for biologists, physicists, and mathematicians. Of particular interest is the study of period-doubling bifurcations and chaos due to their link with cardiac arrhythmogenesis. In this paper we study the spatiotemporal dynamics of a recently developed model for calcium-driven alternans in a one dimensional cable of tissue. In particular, we observe in the cable coexistence of regions with chaotic and multi-periodic dynamics over wide ranges of parameters. We study these dynamics using global and local Lyapunov exponents and spatial trajectory correlations. Interestingly, near nodes -- or phase reversals -- low-periodic dynamics prevail, while away from the nodes the dynamics tend to be higher-periodic and eventually chaotic. Finally, we show that similar coexisting multi-periodic and chaotic dynamics can also be observed in a detailed ionic model

    Downlink Analysis for a Heterogeneous Cellular Network

    Full text link
    In this paper, a comprehensive study of the the downlink performance in a heterogeneous cellular network (or hetnet) is conducted. A general hetnet model is considered consisting of an arbitrary number of open-access and closed-access tier of base stations (BSs) arranged according to independent homogeneous Poisson point processes. The BSs of each tier have a constant transmission power, random fading coefficient with an arbitrary distribution and arbitrary path-loss exponent of the power-law path-loss model. For such a system, analytical characterizations for the coverage probability and average rate at an arbitrary mobile-station (MS), and average per-tier load are derived for both the max-SINR connectivity and nearest-BS connectivity models. Using stochastic ordering, interesting properties and simplifications for the hetnet downlink performance are derived by relating these two connectivity models to the maximum instantaneous received power (MIRP) connectivity model and the maximum biased received power (MBRP) connectivity models, respectively, providing good insights about the hetnets and the downlink performance in these complex networks. Furthermore, the results also demonstrate the effectiveness and analytical tractability of the stochastic geometric approach to study the hetnet performance.Comment: 13 pages, 3 figures, 1 table, to be submitted to Transactions on Wireless Communication

    Synchronization in large directed networks of coupled phase oscillators

    Full text link
    We extend recent theoretical approximations describing the transition to synchronization in large undirected networks of coupled phase oscillators to the case of directed networks. We also consider extensions to networks with mixed positive/negative coupling strengths. We compare our theory with numerical simulations and find good agreement

    Negative-energy perturbations in cylindrical equilibria with a radial electric field

    Get PDF
    The impact of an equilibrium radial electric field EE on negative-energy perturbations (NEPs) (which are potentially dangerous because they can lead to either linear or nonlinear explosive instabilities) in cylindrical equilibria of magnetically confined plasmas is investigated within the framework of Maxwell-drift kinetic theory. It turns out that for wave vectors with a non-vanishing component parallel to the magnetic field the conditions for the existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D. Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for the existence of perpendicular NEPs, which are found to be the most important perturbations, is modified. For eiϕTi|e_i\phi|\approx T_i (ϕ\phi is the electrostatic potential) and Ti/Te>βcP/(B2/8π)T_i/T_e > \beta_c\approx P/(B^2/8\pi) (PP is the total plasma pressure), a case which is of operational interest in magnetic confinement systems, the existence of perpendicular NEPs depends on eνEe_\nu E, where eνe_\nu is the charge of the particle species ν\nu. In this case the electric field can reduce the NEPs activity in the edge region of tokamaklike and stellaratorlike equilibria with identical parabolic pressure profiles, the reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late

    Negative-Energy Perturbations in Circularly Cylindrical Equilibria within the Framework of Maxwell-Drift Kinetic Theory

    Full text link
    The conditions for the existence of negative-energy perturbations (which could be nonlinearly unstable and cause anomalous transport) are investigated in the framework of linearized collisionless Maxwell-drift kinetic theory for the case of equilibria of magnetically confined, circularly cylindrical plasmas and vanishing initial field perturbations. For wave vectors with a non-vanishing component parallel to the magnetic field, the plane equilibrium conditions (derived by Throumoulopoulos and Pfirsch [Phys Rev. E {\bf 49}, 3290 (1994)]) are shown to remain valid, while the condition for perpendicular perturbations (which are found to be the most important modes) is modified. Consequently, besides the tokamak equilibrium regime in which the existence of negative-energy perturbations is related to the threshold value of 2/3 of the quantity ην=lnTνlnNν\eta_\nu = \frac {\partial \ln T_\nu} {\partial \ln N_\nu}, a new regime appears, not present in plane equilibria, in which negative-energy perturbations exist for {\em any} value of ην\eta_\nu. For various analytic cold-ion tokamak equilibria a substantial fraction of thermal electrons are associated with negative-energy perturbations (active particles). In particular, for linearly stable equilibria of a paramagnetic plasma with flat electron temperature profile (ηe=0\eta_e=0), the entire velocity space is occupied by active electrons. The part of the velocity space occupied by active particles increases from the center to the plasma edge and is larger in a paramagnetic plasma than in a diamagnetic plasma with the same pressure profile. It is also shown that, unlike in plane equilibria, negative-energy perturbations exist in force-free reversed-field pinch equilibria with a substantial fraction of active particles.Comment: 31 pages, late
    corecore