441 research outputs found

    Superior T memory stem cell persistence supports long-lived T cell memory

    Get PDF
    Long-lived memory T cells are able to persist in the host in the absence of antigen; however, the mechanism by which they are maintained is not well understood. Recently, a subset of human T cells, stem cell memory T cells (TSCM cells), was shown to be self-renewing and multipotent, thereby providing a potential reservoir for T cell memory throughout life. However, their in vivo dynamics and homeostasis still remain to be defined due to the lack of suitable animal models. We identified T cells with a TSCM phenotype and stem cell–like properties in nonhuman primates. These cells were the least-differentiated memory subset, were functionally distinct from conventional memory cells, and served as precursors of central memory. Antigen-specific TSCM cells preferentially localized to LNs and were virtually absent from mucosal surfaces. They were generated in the acute phase of viral infection, preferentially survived in comparison with all other memory cells following elimination of antigen, and stably persisted for the long term. Thus, one mechanism for maintenance of long-term T cell memory derives from the unique homeostatic properties of TSCM cells. Vaccination strategies designed to elicit durable cellular immunity should target the generation of TSCM cells

    New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Get PDF
    A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL), are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs), chimeric antibody-T cell receptors (CARs) and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies

    Synthetic soldiers: Turning T cells into immortal warriors

    Get PDF
    The creation of synthetic T cell states has captivated the field of cell-based therapies. Wang et al. (https://doi.org/10.1084/jem.20232368) describe how disruption of BCOR and ZC3H12A unleashes anti-tumor T cells with unprecedented lifespan and killer instinct. Are we witnessing the birth of immortal super-soldiers in medicine

    miR-155 augments CD8(+) T-cell antitumor activity in lymphoreplete hosts by enhancing responsiveness to homeostatic gamma(c) cytokines

    Get PDF
    Lymphodepleting regimens are used before adoptive immunotherapy to augment the antitumor efficacy of transferred T cells by removing endogenous homeostatic "cytokine sinks." These conditioning modalities, however, are often associated with severe toxicities. We found that microRNA-155 (miR-155) enabled tumor-specific CD8(+) T cells to mediate profound antitumor responses in lymphoreplete hosts that were not potentiated by immune-ablation. miR-155 enhanced T-cell responsiveness to limited amounts of homeostatic gamma c cytokines, resulting in delayed cellular contraction and sustained cytokine production. miR-155 restrained the expression of the inositol 5-phosphatase Ship1, an inhibitor of the serine-threonine protein kinase Akt, and multiple negative regulators of signal transducer and activator of transcription 5 (Stat5), including suppressor of cytokine signaling 1 (Socs1) and the protein tyrosine phosphatase Ptpn2. Expression of constitutively active Stat5a recapitulated the survival advantages conferred by miR-155, whereas constitutive Akt activation promoted sustained effector functions. Our results indicate that overexpression of miR-155 in tumor-specific T cells can be used to increase the effectiveness of adoptive immunotherapies in a cell-intrinsic manner without the need for life-threatening, lymphodepleting maneuvers.112922Ysciescopu

    Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cell

    Get PDF
    The T cell compartment is phenotypically and functionally heterogeneous; subsets of naive and memory cells have different functional properties, and also differ with respect to homeostatic potential and the ability to persist in vivo. Human stem cell memory T (TSCM) cells, which possess superior immune reconstitution and antitumor response capabilities, can be identified by polychromatic flow cytometry on the basis of the simultaneous expression of several naive markers together with the memory marker CD95. We describe here a protocol based on the minimum set of markers required for optimal identification of human and nonhuman primate (NHP) TSCM cells with commonly available flow cytometers. By using flow sorters, TSCM cells can thereby be isolated efficiently at high yield and purity. With the use of the 5.5-h isolation procedure, depending on the number of cells needed, the sorting procedure can last for 2-15 h. We also indicate multiple strategies for their efficient expansion in vitro at consistent numbers for functional characterization or adoptive transfer experiments

    The In vivo

    Full text link
    It has been hypothesized that rapidly dividing tumor cells can outpace adoptively transferred anti-tumor lymphocytes when tumors are large. However, this hypothesis is at odds with clinical observations indicating that bulky tumors can be destroyed by small numbers of adoptively transferred anti-tumor T cells. We sought to measure the relative growth rates of T cells and tumor cells in a model using transgenic CD8(+) T cells specific for the gp100(25–33) H-2D(b) epitope (called pmel-1) to treat large, well-established subcutaneous B16 melanoma. We tested the impact of the immunization using an altered-peptide ligand vaccine alone or in combination with IL-2 by analyzing the kinetics of T cell expansion using direct enumeration. We found that pmel-1 T cells proliferated explosively during a 5-day period following transfer. Calculations from net changes in population suggest that at the peak of cell division, pmel-1 T cells divide at a rate of 5.3 hours/cell division, which was much faster than B16 tumor cells during optimal growth (24.9 hours/cell division). These results clearly indicate that the notion of a kinetic “race” between the tumor and lymphocyte is no contest when adoptively transferred cells are stimulated with immunization and IL-2. When appropriately stimulated, tumor-reactive T cell expansion can far exceed the growth of even an aggressively growing mouse tumor
    corecore