2,309 research outputs found

    Non-Nominal Value of the Dynamical Effective Charge in Alkaline-Earth Oxides

    Full text link
    We calculate ab-initio the electronic states and the Born dynamical charge Z* of the alkaline-earth oxides in the local-density approximation. We investigate the trend of increasing Z* values through the series, using band-by-band decompositions and computational experiments performed on fake materials with artificially-modified covalence. The deviations of Z* from the nominal value 2 are due to the increasing interaction between O 2p orbitals and unoccupied cation d states. We also explain the variations, along the series, of the individual contributions to Z* arising from the occupied band manifolds.Comment: 12 pages Latex, plus 2 Postscript figure

    Theory of Orbital Magnetization in Solids

    Full text link
    In this review article, we survey the relatively new theory of orbital magnetization in solids-often referred to as the "modern theory of orbital magnetization"-and its applications. Surprisingly, while the calculation of the orbital magnetization in finite systems such as atoms and molecules is straight forward, in extended systems or solids it has long eluded calculations owing to the fact that the position operator is ill-defined in such a context. Approaches that overcome this problem were first developed in 2005 and in the first part of this review we present the main ideas reaching from a Wannier function approach to semi-classical and finite-temperature formalisms. In the second part, we describe practical aspects of calculating the orbital magnetization, such as taking k-space derivatives, a formalism for pseudopotentials, a single k-point derivation, a Wannier interpolation scheme, and DFT specific aspects. We then show results of recent calculations on Fe, Co, and Ni. In the last part of this review, we focus on direct applications of the orbital magnetization. In particular, we will review how properties such as the nuclear magnetic resonance shielding tensor and the electron paramagnetic resonance g-tensor can elegantly be calculated in terms of a derivative of the orbital magnetization

    Lattice Twisting Operators and Vertex Operators in Sine-Gordon Theory in One Dimension

    Full text link
    In one dimension, the exponential position operators introduced in a theory of polarization are identified with the twisting operators appearing in the Lieb-Schultz-Mattis argument, and their finite-size expectation values zLz_L measure the overlap between the unique ground state and an excited state. Insulators are characterized by z0z_{\infty}\neq 0. We identify zLz_L with ground-state expectation values of vertex operators in the sine-Gordon model. This allows an accurate detection of quantum phase transitions in the universality classes of the Gaussian model. We apply this theory to the half-filled extended Hubbard model and obtain agreement with the level-crossing approach.Comment: 4 pages, 3 figure

    Modeling the Yield Curve of BRICS Countries: Parametric vs. Machine Learning Techniques

    Get PDF
    We compare parametric and machine learning techniques (namely: Neural Networks) for in\u2013sample modeling of the yield curve of the BRICS countries (Brazil, Russia, India, China, South Africa). To such aim, we applied the Dynamic De Rezende\u2013Ferreira five\u2013factor model with time\u2013varying decay parameters and a Feed\u2013Forward Neural Network to the bond market data of the BRICS countries. To enhance the flexibility of the parametric model, we also introduce a new procedure to estimate the time varying parameters that significantly improve its performance. Our contribution spans towards two directions. First, we offer a comprehensive investigation of the bond market in the BRICS countries examined both by time and maturity; working on five countries at once we also ensure that our results are not specific to a particular data\u2013set; second we make recommendations concerning modelling and estimation choices of the yield curve. In this respect, although comparing highly flexible estimation methods, we highlight superior in\u2013sample capabilities of the neural network in all the examined markets and then suggest that machine learning techniques can be a valid alternative to more traditional methods also in presence of marked turbulence

    Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    Full text link
    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard geometry is seen to give rise to a a novel magnetostructural effect that is neither present in the bulk constituent materials, nor in the layered BiFeO3-BiMnO3 superlattice.Comment: 15 pages, 14 figure

    Topological quantum phase transition in the BEC-BCS crossover phenomena

    Get PDF
    A crossover between the Bose Einstein condensation (BEC) and BCS superconducting state is described topologically in the chiral symmetric fermion system with attractive interaction. Using a local Z_2 Berry phase, we found a quantum phase transition between the BEC and BCS phases without accompanying the bulk gap closing.Comment: 4 pages, 5 figure

    The effects of interface morphology on Schottky barrier heights: a case study on Al/GaAs(001)

    Full text link
    The problem of Fermi-level pinning at semiconductor-metal contacts is readdressed starting from first-principles calculations for Al/GaAs. We give quantitative evidence that the Schottky barrier height is very little affected by any structural distortions on the metal side---including elongations of the metal-semiconductor bond (i.e. interface strain)---whereas it strongly depends on the interface structure on the semiconductor side. A rationale for these findings is given in terms of the interface dipole generated by the ionic effective charges.Comment: 5 pages, latex file, 2 postscript figures automatically include

    Ground-State Decay Rate for the Zener Breakdown in Band and Mott Insulators

    Full text link
    Non-linear transport of electrons in strong electric fields, as typified by dielectric breakdown, is re-formulated in terms of the ground-state decay rate originally studied by Schwinger in non-linear QED. We discuss the effect of electron interaction on Zener tunneling by comparing the dielectric breakdown of the band insulator and the Mott insulator, where the latter is studied by the time-dependent density-matrix renormalization group (DMRG). The relation with the Berry's phase theory of polarization is also established.Comment: 5 pages 2 figures, revised text, version to appear in Phys. Rev. Let

    Strong-correlation effects in Born effective charges

    Full text link
    Large values of Born effective charges are generally considered as reliable indicators of the genuine tendency of an insulator towards ferroelectric instability. However, these quantities can be very much influenced by strong electron correlation and metallic behavior, which are not exclusive properties of ferroelectric materials. In this paper we compare the Born effective charges of some prototypical ferroelectrics with those of magnetic, non-ferroelectric compounds using a novel, self-interaction free methodology that improves on the local-density approximation description of the electronic properties. We show that the inclusion of strong-correlation effects systermatically reduces the size of the Born effective charges and the electron localization lengths. Furthermore we give an interpretation of the Born effective charges in terms of band energy structure and orbital occupations which can be used as a guideline to rationalize their values in the general case.Comment: 10 pages, 4 postscript figure
    corecore