1,324 research outputs found

    APM 08279+5255: Keck Near- and Mid-IR High-Resolution Imaging

    Get PDF
    We present Keck high-resolution near-IR (2.2 microns; FWHM~0.15") and mid-IR (12.5 microns; FWHM~0.4") images of APM08279+5255, a z=3.91 IR-luminous BALQSO with a prodigious apparent bolometric luminosity of 5x10^{15} Lsun, the largest known in the universe. The K-band image shows that this system consists of three components, all of which are likely to be the gravitationally lensed images of the same background object, and the 12.5 micron image shows a morphology consistent with such an image configuration. Our lens model suggests that the magnification factor is ~100 from the restframe UV to mid-IR, where most of the luminosity is released. The intrinsic bolometric luminosity and IR luminosity of APM08279+5255 are estimated to be 5x10^{13} Lsun and 1x10^{13} Lsun, respectively. This indicates that APM 08279+5255 is intriniscally luminous, but it is not the most luminous object known. As for its dust contents, little can be determined with the currently available data due to the uncertainties associated with the dust emissivity and the possible effects of differential magnification. We also suggest that the lensing galaxy is likely to be a massive galaxy at z~3.Comment: 32 pages, 4 tables, 11 figures; Accepted for publication in Ap

    Deliverable, Low-Cost Student Response Systems

    Get PDF
    This paper describes three deliverable, low-cost student response systems - software tools for providing Instructors with immediate feedback on students. Each of these tools has been and Is being developed at the United States Military Academy for similar purposes. First, the software can be used as a lesson structuring tool. Instructors can tailor their presentations to classes based on the results of their students\u27 lesson preparation the night before. This results in classes that are specifically targeted at those subjects the students had difficulty with. As a result, the instructors can better utilize their class period and the students will find the classroom Instruction more valuable. Second, we have used the software during class to validate that the students understand a particular learning objective before moving on to the next learning objective or to tabulate the class\u27 opinion on a student submission anonymously. Due to the automatic, real-time grading of results, the student response system allows greater control over class presentations by providing relevant feedback to the instructor and the student in real-time. Finally, the student response system can be incorporated into courses taught using hypermedia. As before, the system provides critical feedback to the student and Instructor alike and allows for the tailoring of study sessions and course material respectively

    High Resolution Infrared Imaging of the Compact Nuclear Source in NGC4258

    Get PDF
    We present high resolution imaging of the nucleus of NGC4258 from 1 micron to 18 microns. Our observations reveal that the previously discovered compact source of emission is unresolved even at the near-infrared resolution of about 0.2 arcsec FWHM which corresponds to about 7 pc at the distance of the galaxy. This is consistent with the source of emission being the region in the neighborhood of the purported 3.5*10^7 M_sun black hole. After correcting for about 18 mags of visual extinction, the infrared data are consistent with a F_nu \propto nu^(-1.4+/-0.1) spectrum from 1.1 micron to 18 micron, implying a non-thermal origin. Based on this spectrum, the total extinction corrected infrared luminosity (1-20 micron) of the central source is 2*10^8 L_sun. We argue that the infrared spectrum and luminosity of the central source obviates the need for a substantial contribution from a standard, thin accretion disk at these wavelengths and calculate the accretion rate through an advection dominated accretion flow to be Mdot \sim 10^(-3) M_sun/yr. The agreement between these observations and the theoretical spectral energy distribution for advection dominated flows provides evidence for the existence of an advection dominated flow in this low luminosity AGN.Comment: 21 pages, 5 figures, Appearing in Mar 2000 ApJ vol. 53

    The Mid-Infrared Instrument for the James Webb Space Telescope, VII: The MIRI Detectors

    Full text link
    The MIRI Si:As IBC detector arrays extend the heritage technology from the Spitzer IRAC arrays to a 1024 x 1024 pixel format. We provide a short discussion of the principles of operation, design, and performance of the individual MIRI detectors, in support of a description of their operation in arrays provided in an accompanying paper (Ressler et al. (2015)). We then describe modeling of their response. We find that electron diffusion is an important component of their performance, although it was omitted in previous models. Our new model will let us optimize the bias voltage while avoiding avalanche gain. It also predicts the fraction of the IR-active layer that is depleted (and thus contributes to the quantum efficiency) as signal is accumulated on the array amplifier. Another set of models accurately predicts the nonlinearity of the detector-amplifier unit and has guided determination of the corrections for nonlinearity. Finally, we discuss how diffraction at the interpixel gaps and total internal reflection can produce the extended cross-like artifacts around images with these arrays at short wavelengths, ~ 5 microns. The modeling of the behavior of these devices is helping optimize how we operate them and also providing inputs to the development of the data pipeline

    The Compact Nucleus of the Deep Silicate Absorption Galaxy NGC 4418

    Get PDF
    High resolution, Hubble Space Telescope (HST) near-infrared and Keck mid-infrared images of the heavily extinguished, infrared luminous galaxy NGC 4418 are presented. These data make it possible to observe the imbedded near-infrared structure on scales of 10-20 pc, and to constrain the size of the mid-infrared emitting region. The 1.1-2.2 um data of NGC 4418 show no clear evidence of nuclear star clusters or of a reddened active galactic nucleus. Instead, the nucleus of the galaxy consists of a ~100-200 pc linear structure with fainter structures extending radially outward. The near-infrared colors of the linear feature are consistent with a 10-300 Myr starburst suffering moderate levels (few magnitudes) of visual extinction. At 7.9-24.5 um, NGC 4418 has estimated size upper limits in the range of 30-80 pc. These dimensions are consistent with the highest resolution radio observations obtained to date of NGC 4418, as well as the size of 50-70 pc expected for a blackbody with a temperature derived from the 25 um, 60 um, and 100 um flux densities of the galaxy. Further, a spectral energy distribution constructed from the multi-wavelength mid-infrared observations show the strong silicate absorption feature at 10 um, consistent with previous mid-infrared observations of NGC 4418. An infrared surface brightness of 2.1x10^13 L_sun kpc^-2 is derived for NGC 4418. Such a value, though consistent with the surface brightness of warm ultraluminous infrared galaxies (ULIGs: L_IR [8-1000 um] >~ 10^12 L_sun) such as IRAS 05189-2524 and IRAS 08572+3915, is not large enough to distinguish NGC 4418 as a galaxy powered by an Active Galactic Nucleus (AGN), as opposed to a lower surface brightness starburst.Comment: LaTex, 7 pages, including 2 jpg figures and 3 postscript figures, AJ, in press (May, 2003

    HRTEM observation of the monoclinic-to-tetragonal (m-t) phase transition in nanocrystalline ZrO<sub>2</sub>

    No full text
    The orientation relations m(100) || t(001), m[001] || t[110]; m(011) || t(100), m[001] || t[110]; m(100) || t(110), m[001] || t[001]; m(013) || t(116), m[001] || t[001]; (indices for the primitive tetragonal cell) have been found between the tetragonal (t) and monoclinic (m) domains during the electron irradiation-induced m-t phase transition observed in-situ with HREM within isolated zirconia nanoparticles. Geometric models of the m-t interfaces are proposed. Keywords High-resolution transmission electron microscopy, nanoparticles, orientation relations, polymorphism, zirconia, catalys

    From Bio-waste to Bone Substitute: Synthesis of Biomimetic Hydroxyapatite and Its Use in Chitosan-based Composite Scaffold Preparation

    Get PDF
    Nanocomposite structure of the bone can be mimicked by chitosan/hydroxyapatite (CS/HAp) composite scaffold. Biological hydroxyapatite (HAp) contains various ions, which have a crucial role in bone growth. The aim of the present work was to synthesize biomimetic hydroxyapatite and prepare composite scaffolds based on chitosan, where HAp was synthesised from hen eggshells, seashells and cuttlefish bone. The powders were composed of nano-structured calcium deficient HAp and amorphous calcium phosphate (ACP). In the as-prepared powders, Sr2+, Mg2+ and Na+ ions were detected as a result of using biogenic precursor of Ca2+ ions. Highly porous CS/HAp structures have been prepared by freeze-gelation technique. The CS/HAp scaffolds have shown highly porous structure with very well interconnected pores and homogeneously dispersed HAp particles. The MTT assay of CS/HAp scaffolds has shown no toxicity, and the live/dead assay has confirmed good viability and proliferation of seeded cells. This work is licensed under a Creative Commons Attribution 4.0 International License
    corecore