High resolution, Hubble Space Telescope (HST) near-infrared and Keck
mid-infrared images of the heavily extinguished, infrared luminous galaxy NGC
4418 are presented. These data make it possible to observe the imbedded
near-infrared structure on scales of 10-20 pc, and to constrain the size of the
mid-infrared emitting region. The 1.1-2.2 um data of NGC 4418 show no clear
evidence of nuclear star clusters or of a reddened active galactic nucleus.
Instead, the nucleus of the galaxy consists of a ~100-200 pc linear structure
with fainter structures extending radially outward. The near-infrared colors of
the linear feature are consistent with a 10-300 Myr starburst suffering
moderate levels (few magnitudes) of visual extinction. At 7.9-24.5 um, NGC 4418
has estimated size upper limits in the range of 30-80 pc. These dimensions are
consistent with the highest resolution radio observations obtained to date of
NGC 4418, as well as the size of 50-70 pc expected for a blackbody with a
temperature derived from the 25 um, 60 um, and 100 um flux densities of the
galaxy. Further, a spectral energy distribution constructed from the
multi-wavelength mid-infrared observations show the strong silicate absorption
feature at 10 um, consistent with previous mid-infrared observations of NGC
4418. An infrared surface brightness of 2.1x10^13 L_sun kpc^-2 is derived for
NGC 4418. Such a value, though consistent with the surface brightness of warm
ultraluminous infrared galaxies (ULIGs: L_IR [8-1000 um] >~ 10^12 L_sun) such
as IRAS 05189-2524 and IRAS 08572+3915, is not large enough to distinguish NGC
4418 as a galaxy powered by an Active Galactic Nucleus (AGN), as opposed to a
lower surface brightness starburst.Comment: LaTex, 7 pages, including 2 jpg figures and 3 postscript figures, AJ,
in press (May, 2003