123 research outputs found
Small Interfering RNA Targeted to IGF-IR Delays Tumor Growth and Induces Proinflammatory Cytokines in a Mouse Breast Cancer Model
Insulin-like growth factor I (IGF-I) and its type I receptor (IGF-IR) play significant roles in tumorigenesis and in immune response. Here, we wanted to know whether an RNA interference approach targeted to IGF-IR could be used for specific antitumor immunostimulation in a breast cancer model. For that, we evaluated short interfering RNA (siRNAs) for inhibition of in vivo tumor growth and immunological stimulation in immunocompetent mice. We designed 2′-O-methyl-modified siRNAs to inhibit expression of IGF-IR in two murine breast cancer cell lines (EMT6, C4HD). Cell transfection of IGF-IR siRNAs decreased proliferation, diminished phosphorylation of downstream signaling pathway proteins, AKT and ERK, and caused a G0/G1 cell cycle block. The IGF-IR silencing also induced secretion of two proinflammatory cytokines, TNF- α and IFN-γ. When we transfected C4HD cells with siRNAs targeting IGF-IR, mammary tumor growth was strongly delayed in syngenic mice. Histology of developing tumors in mice grafted with IGF-IR siRNA treated C4HD cells revealed a low mitotic index, and infiltration of lymphocytes and polymorphonuclear neutrophils, suggesting activation of an antitumor immune response. When we used C4HD cells treated with siRNA as an immunogen, we observed an increase in delayed-type hypersensitivity and the presence of cytotoxic splenocytes against wild-type C4HD cells, indicative of evolving immune response. Our findings show that silencing IGF-IR using synthetic siRNA bearing 2′-O-methyl nucleotides may offer a new clinical approach for treatment of mammary tumors expressing IGF-IR. Interestingly, our work also suggests that crosstalk between IGF-I axis and antitumor immune response can mobilize proinflammatory cytokines
The baculovirus anti-apoptotic p35 protein promotes transformation of mouse embryo fibroblasts.
The baculovirus p35 protein is a potent inhibitor of programmed cell death induced by a variety of stimuli in insects, nematodes, and mammalian cell lines. The broad ability of p35 in preventing apoptosis has led us to investigate its effect on mouse embryo fibroblasts in vitro and in vivo. For this purpose, we have used R- cells (3T3-like fibroblasts derived from mouse embryos with a targeted disruption of the insulin-like growth factor I receptor (IGF-IR) genes) and R508 cells (derived from R- and with 15 x 10(3) IGF-IRs per cell). Both cell lines grow normally in monolayer, but they do not form colonies in soft agar, and they are non-tumorigenic in nude mice. We show here that, in addition to its anti-apoptotic effect, p35 causes transformation of R508 cells, as evidenced by the following: 1) decreased growth factor requirements, 2) ability to form foci in monolayer and colonies in soft agar, and 3) ability to form tumors in nude mice. Since R- cells stably transfected with p35 do not transform, our observations suggest that in addition to its effect as an inhibitor of apoptosis, the baculovirus p35 protein has transforming potential that requires the presence of the IGF-IR. The possibility that these two properties could be separated was confirmed by demonstrating that R508 cells expressing another anti-apoptotic protein, Bcl-2, could not form tumors in nude mice
IGF-I induced genes in stromal fibroblasts predict the clinical outcome of breast and lung cancer patients
<p>Abstract</p> <p>Background</p> <p>Insulin-like growth factor-1 (IGF-I) signalling is important for cancer initiation and progression. Given the emerging evidence for the role of the stroma in these processes, we aimed to characterize the effects of IGF-I on cancer cells and stromal cells separately.</p> <p>Methods</p> <p>We used an <it>ex vivo </it>culture model and measured gene expression changes after IGF-I stimulation with cDNA microarrays. <it>In vitro </it>data were correlated with <it>in vivo </it>findings by comparing the results with published expression datasets on human cancer biopsies.</p> <p>Results</p> <p>Upon stimulation with IGF-I, breast cancer cells and stromal fibroblasts show some common and other distinct response patterns. Among the up-regulated genes in the stromal fibroblasts we observed a significant enrichment in proliferation associated genes. The expression of the IGF-I induced genes was coherent and it provided a basis for the segregation of the patients into two groups. Patients with tumours with highly expressed IGF-I induced genes had a significantly lower survival rate than patients whose tumours showed lower levels of IGF-I induced gene expression (<it>P </it>= 0.029 - Norway/Stanford and <it>P </it>= 7.96e-09 - NKI dataset). Furthermore, based on an IGF-I induced gene expression signature derived from primary lung fibroblasts, a separation of prognostically different lung cancers was possible (<it>P </it>= 0.007 - Bhattacharjee and <it>P </it>= 0.008 - Garber dataset).</p> <p>Conclusion</p> <p>Expression patterns of genes induced by IGF-I in primary breast and lung fibroblasts accurately predict outcomes in breast and lung cancer patients. Furthermore, these IGF-I induced gene signatures derived from stromal fibroblasts might be promising predictors for the response to IGF-I targeted therapies.</p> <p>See the related commentary by Werner and Bruchim: <url>http://www.biomedcentral.com/1741-7015/8/2</url></p
Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks
The role of nucleotides in intracellular energy provision and nucleic acid synthesis has been known for a long time. In the past decade, evidence has been presented that, in addition to these functions, nucleotides are also autocrine and paracrine messenger molecules that initiate and regulate a large number of biological processes. The actions of extracellular nucleotides are mediated by ionotropic P2X and metabotropic P2Y receptors, while hydrolysis by ecto-enzymes modulates the initial signal. An increasing number of studies have been performed to obtain information on the signal transduction pathways activated by nucleotide receptors. The development of specific and stable purinergic receptor agonists and antagonists with therapeutical potential largely contributed to the identification of receptors responsible for nucleotide-activated pathways. This article reviews the signal transduction pathways activated by P2Y receptors, the involved second messenger systems, GTPases and protein kinases, as well as recent findings concerning P2Y receptor signalling in C6 glioma cells. Besides vertical signal transduction, lateral cross-talks with pathways activated by other G protein-coupled receptors and growth factor receptors are discussed
Primerjava toksiÄŤnosti etanola in acetaldehida za podganje astrocite v primarni kulturi
This study compared the effects of toxicity of ethanol and its first metabolite acetaldehyde in rat astrocytes through cell viability and cell proliferation. The cells were treated with different concentrations of ethanol in the presence or absence of a catalase inhibitor 2-amino-1,2,4 triazole (AMT) or with different concentrations of acetaldehyde. Cell viability was assessed using the trypan blue test. Cell proliferation was assessed after 24 hours and after seven days of exposure to either ethanol or acetaldehyde.
We showed that both ethanol and acetaldehyde decreased cell viability in a dose-dependent manner. In proliferation studies, after seven days of exposure to either ethanol or acetaldehyde, we observed a significant dose-dependent decrease in cell number. The protein content study showed biphasic dose-response curves, after 24 hours and seven days of exposure to either ethanol or acetaldehyde. Co-incubation in the presence of AMT significantly reduced the inhibitory effect of ethanol on cell proliferation.
We concluded that long-term exposure of astrocytes to ethanol is more toxic than acute exposure. Acetaldehyde is a much more potent toxin than ethanol, and at least a part of ethanol toxicity is due to ethanol’s first metabolite acetaldehyde.V študiji smo primerjali toksičnost etanola in njegovega prvega metabolita acetaldehida za podganje astrocite z določitvijo celične viabilnosti in proliferacije. Celične kulture smo tretirali z različnimi
koncentracijami etanola, etanola v prisotnosti inhibitorja katalaze 2-amino-1,2,4 triazol-a (AMT) ali z različnimi koncentracijami acetaldehida. Celično viabilnost smo vrednotili s pomočjo testa s tripanskim modrilom, celično proliferacijo pa s štetjem celic in določitvijo koncentracije proteinov po 24-urni, kot
tudi 7-dnevni izpostavljenosti.
S študijo smo pokazali, da tako etanol kot tudi acetaldehid v odvisnosti od njune koncentracije zmanjšata celično viabilnost. V študiji proliferacije sta etanol in acetaldehid, v odvisnosti od njunih koncentracij, značilno zmanjšala število celic po 7-dnevni izpostavljenosti. Pri ugotavljanju vsebnosti proteinov smo
dobili bifazno krivuljo tako po 24-urni, kot tudi po 7-dnevni izpostavljenosti različnim koncentracijam etanola oziroma acetaldehida. Prisotnost AMT je signifi kantno zmanjšala učinek etanola na celično proliferacijo.
Zaključimo lahko, da je dolgotrajna izpostavljenost astrocitov etanolu bolj toksična kot akutna. Acetaldehid je močnejši toksin kot etanol in vsaj del toksičnosti etanola je posledica delovanja njegovega prvega
metabolita, acetaldehida
Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors.
Insulin-like growth factor-1 (IGF-1) and IGF-2 are critical regulators of cell proliferation. The growth-promoting action of both ligands is mediated by the type 1 IGF receptor (IGF-1R). We have investigated the role of the IGF-1R in the growth and tumorigenicity of rat C6 glioblastoma cells. For this purpose, antisense RNA to IGF-1R RNA was introduced into cells by either the addition of oligodeoxynucleotides or by transfection with plasmids that express antisense RNA to IGF-1R RNA. At low cell density, C6 cells grew slowly in serum-free medium and proliferated with the sole addition of IGF-1 or IGF-2. Both antisense IGF-1R oligodeoxynucleotides and stable transfection with a plasmid expressing an antisense IGF-1R RNA inhibited IGF-1-mediated growth in monolayers and clonogenicity in soft agar. Sense oligodeoxynucleotides and sense-expressing plasmid had no effect on either parameter. In stable antisense transfectants, tyrosine-phosphorylated IGF-1 receptors were not detectable, although they were easily detected in wild-type cells. When wild-type C6 cells were injected s.c. into syngeneic immunocompetent rats, tumors developed within 1 week. In contrast, stably transfected C6 cells overexpressing antisense IGF-1R RNA were nontumorigenic. Moreover, when C6 IGF-1R antisense cells were injected, subsequent tumor formation by wild-type C6 cells was completely prevented. Finally, injection of C6 IGF-1R antisense cells into rats carrying an established wild-type C6 tumor caused complete regression of the tumors. The results demonstrate the critical importance of the IGF-1R in glioblastoma cell growth, clonogenicity, and tumorigenicity. Although the mechanism is presently unknown, the fact that the injection of C6 cells expressing an antisense RNA to IGF-1R RNA leads to regression of already established wild-type C6 tumors suggests the possibility of practical applications
- …