297 research outputs found

    Diagnosis and neurosurgical treatment of glossopharyngeal neuralgia: clinical findings and 3-D visualization of neurovascular compression in 19 consecutive patients

    Get PDF
    Glossopharyngeal neuralgia is a rare condition with neuralgic sharp pain in the pharyngeal and auricular region. Classical glossopharyngeal neuralgia is caused by neurovascular compression at the root entry zone of the nerve. Regarding the rare occurrence of glossopharyngeal neuralgia, we report clinical data and magnetic resonance imaging (MRI) findings in a case series of 19 patients, of whom 18 underwent surgery. Two patients additionally suffered from trigeminal neuralgia and three from additional symptomatic vagal nerve compression. In all patients, ipsilateral neurovascular compression syndrome of the IX cranial nerve could be shown by high-resolution MRI and image processing, which was confirmed intraoperatively. Additional neurovascular compression of the V cranial nerve was shown in patients suffering from trigeminal neuralgia. Vagal nerve neurovascular compression could be seen in all patients during surgery. Sixteen patients were completely pain free after surgery without need of anticonvulsant treatment. As a consequence of the operation, two patients suffered from transient cerebrospinal fluid hypersecretion as a reaction to Teflon implants. One patient suffered postoperatively from deep vein thrombosis and pulmonary embolism. Six patients showed transient cranial nerve dysfunctions (difficulties in swallowing, vocal cord paresis), but all recovered within 1 week. One patient complained of a gnawing and burning pain in the cervical area. Microvascular decompression is a second-line treatment after failure of standard medical treatment with high success in glossopharyngeal neuralgia. High-resolution MRI and 3D visualization of the brainstem and accompanying vessels as well as the cranial nerves is helpful in identifying neurovascular compression before microvascular decompression procedure

    Predicting mortality of residents at admission to nursing home: A longitudinal cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing numbers of deaths occur in nursing homes. Knowledge of the course of development over the years in death rates and predictors of mortality is important for officials responsible for organizing care to be able to ensure that staff is knowledgeable in the areas of care needed. The aim of this study was to investigate the time from residents' admission to Icelandic nursing homes to death and the predictive power of demographic variables, health status (health stability, pain, depression and cognitive performance) and functional profile (ADL and social engagement) for 3-year mortality in yearly cohorts from 1996-2006.</p> <p>Methods</p> <p>The samples consisted of residents (N = 2206) admitted to nursing homes in Iceland in 1996-2006, who were assessed once at baseline with a Minimum Data Set (MDS) within 90 days of their admittance to the nursing home. The follow-up time for survival of each cohort was 36 months from admission. Based on Kaplan-Meier analysis (log rank test) and non-parametric correlation analyses (Spearman's rho), variables associated with survival time with a p-value < 0.05 were entered into a multivariate Cox regression model.</p> <p>Results</p> <p>The median survival time was 31 months, and no significant difference was detected in the mortality rate between cohorts. Age, gender (HR 1.52), place admitted from (HR 1.27), ADL functioning (HR 1.33-1.80), health stability (HR 1.61-16.12) and ability to engage in social activities (HR 1.51-1.65) were significant predictors of mortality. A total of 28.8% of residents died within a year, 43.4% within two years and 53.1% of the residents died within 3 years.</p> <p>Conclusion</p> <p>It is noteworthy that despite financial constraints, the mortality rate did not change over the study period. Health stability was a strong predictor of mortality, in addition to ADL performance. Considering these variables is thus valuable when deciding on the type of service an elderly person needs. The mortality rate showed that more than 50% died within 3 years, and almost a third of the residents may have needed palliative care within a year of admission. Considering the short survival time from admission, it seems relevant that staff is trained in providing palliative care as much as restorative care.</p

    Study protocol for a group randomized controlled trial of a classroom-based intervention aimed at preventing early risk factors for drug abuse: integrating effectiveness and implementation research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While a number of preventive interventions delivered within schools have shown both short-term and long-term impact in epidemiologically based randomized field trials, programs are not often sustained with high-quality implementation over time. This study was designed to support two purposes. The first purpose was to test the effectiveness of a universal classroom-based intervention, the Whole Day First Grade Program (WD), aimed at two early antecedents to drug abuse and other problem behaviors, namely, aggressive, disruptive behavior and poor academic achievement. The second purpose--the focus of this paper--was to examine the utility of a multilevel structure to support high levels of implementation during the effectiveness trial, to sustain WD practices across additional years, and to train additional teachers in WD practices.</p> <p>Methods</p> <p>The WD intervention integrated three components, each previously tested separately: classroom behavior management; instruction, specifically reading; and family-classroom partnerships around behavior and learning. Teachers and students in 12 schools were randomly assigned to receive either the WD intervention or the standard first-grade program of the school system (SC). Three consecutive cohorts of first graders were randomized within schools to WD or SC classrooms and followed through the end of third grade to test the effectiveness of the WD intervention. Teacher practices were assessed over three years to examine the utility of the multilevel structure to support sustainability and scaling-up.</p> <p>Discussion</p> <p>The design employed in this trial appears to have considerable utility to provide data on WD effectiveness and to inform the field with regard to structures required to move evidence-based programs into practice.</p> <p>Trial Registration</p> <p><b>Clinical Trials Registration Number</b>: NCT00257088</p

    The Meiotic Recombination Checkpoint Suppresses NHK-1 Kinase to Prevent Reorganisation of the Oocyte Nucleus in Drosophila

    Get PDF
    The meiotic recombination checkpoint is a signalling pathway that blocks meiotic progression when the repair of DNA breaks formed during recombination is delayed. In comparison to the signalling pathway itself, however, the molecular targets of the checkpoint that control meiotic progression are not well understood in metazoans. In Drosophila, activation of the meiotic checkpoint is known to prevent formation of the karyosome, a meiosis-specific organisation of chromosomes, but the molecular pathway by which this occurs remains to be identified. Here we show that the conserved kinase NHK-1 (Drosophila Vrk-1) is a crucial meiotic regulator controlled by the meiotic checkpoint. An nhk-1 mutation, whilst resulting in karyosome defects, does so independent of meiotic checkpoint activation. Rather, we find unrepaired DNA breaks formed during recombination suppress NHK-1 activity (inferred from the phosphorylation level of one of its substrates) through the meiotic checkpoint. Additionally DNA breaks induced by X-rays in cultured cells also suppress NHK-1 kinase activity. Unrepaired DNA breaks in oocytes also delay other NHK-1 dependent nuclear events, such as synaptonemal complex disassembly and condensin loading onto chromosomes. Therefore we propose that NHK-1 is a crucial regulator of meiosis and that the meiotic checkpoint suppresses NHK-1 activity to prevent oocyte nuclear reorganisation until DNA breaks are repaired

    Bioprocessing strategies to enhance the challenging isolation of neuro-regenerative cells from olfactory mucosa

    Get PDF
    Olfactory ensheathing cells (OECs) are a promising potential cell therapy to aid regeneration. However, there are significant challenges in isolating and characterizing them. In the current study, we have explored methods to enhance the recovery of cells expressing OEC marker p75NTR from rat mucosa. With the addition of a 24-hour differential adhesion step, the expression of p75NTR was significantly increased to 73 ± 5% and 46 ± 18% on PDL and laminin matrices respectively. Additionally, the introduction of neurotrophic factor NT-3 and the decrease in serum concentration to 2% FBS resulted in enrichment of OECs, with p75NTR at nearly 100% (100 ± 0% and 98 ± 2% on PDL and laminin respectively), and candidate fibroblast marker Thy1.1 decreased to zero. Culturing OECs at physiologically relevant oxygen tension (2–8%) had a negative impact on p75NTR expression and overall cell survival. Regarding cell potency, co-culture of OECs with NG108-15 neurons resulted in more neuronal growth and potential migration at atmospheric oxygen. Moreover, OECs behaved similarly to a Schwann cell line positive control. In conclusion, this work identified key bioprocessing fundamentals that will underpin future development of OEC-based cell therapies for potential use in spinal cord injury repair. However, there is still much work to do to create optimized isolation methods

    The Rotterdam Scan Study: design and update up to 2012

    Get PDF
    Neuroimaging plays an important role in etiologic research on neurological diseases in the elderly. The Rotterdam Scan Study was initiated as part of the ongoing Rotterdam Study with the aim to unravel causes of neurological disease by performing neuroimaging in a population-based longitudinal setting. In 1995 and 1999 random subsets of the Rotterdam Study underwent neuroimaging, whereas from 2005 onwards MRI has been implemented into the core protocol of the Rotterdam Study. In this paper, we discuss the background and rationale of the Rotterdam Scan Study. We also describe the imaging protocol and post-processing techniques, and highlight the main findings to date. Finally, we make recommendations for future research, which will also be the main focus of investigation in the Rotterdam Scan Study

    COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord

    Get PDF
    BACKGROUND: While multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) are primarily inflammatory and degenerative disorders respectively, there is increasing evidence for shared cellular mechanisms that may affect disease progression, particularly glial responses. Cyclooxygenase 2 (COX-2) inhibition prolongs survival and cannabinoids ameliorate progression of clinical disease in animal models of ALS and MS respectively, but the mechanism is uncertain. Therefore, three key molecules known to be expressed in activated microglial cells/macrophages, COX-2, CB2 and P2X7, which plays a role in inflammatory cascades, were studied in MS and ALS post-mortem human spinal cord. METHODS: Frozen human post mortem spinal cord specimens, controls (n = 12), ALS (n = 9) and MS (n = 19), were available for study by immunocytochemistry and Western blotting, using specific antibodies to COX-2, CB2 and P2X7, and markers of microglial cells/macrophages (CD 68, ferritin). In addition, autoradiography for peripheral benzodiazepine binding sites was performed on some spinal cord sections using [3H] (R)-PK11195, a marker of activated microglial cells/macrophages. Results of immunostaining and Western blotting were quantified by computerized image and optical density analysis respectively. RESULTS: In control spinal cord, few small microglial cells/macrophages-like COX-2-immunoreactive cells, mostly bipolar with short processes, were scattered throughout the tissue, whilst MS and ALS specimens had significantly greater density of such cells with longer processes in affected regions, by image analysis. Inflammatory cell marker CD68-immunoreactivity, [3H] (R)-PK11195 autoradiography, and double-staining against ferritin confirmed increased production of COX-2 by activated microglial cells/macrophages. An expected 70-kDa band was seen by Western blotting which was significantly increased in MS spinal cord. There was good correlation between the COX-2 immunostaining and optical density of the COX-2 70-kDa band in the MS group (r = 0.89, P = 0.0011, n = 10). MS and ALS specimens also had significantly greater density of P2X7 and CB2-immunoreactive microglial cells/macrophages in affected regions. CONCLUSION: It is hypothesized that the known increase of lesion-associated extracellular ATP contributes via P2X7 activation to release IL-1 beta which in turn induces COX-2 and downstream pathogenic mediators. Selective CNS-penetrant COX-2 and P2X7 inhibitors and CB2 specific agonists deserve evaluation in the progression of MS and ALS
    corecore