85 research outputs found
ANALISIS BANJIR RANCANGAN DENGAN METODE HSS NAKAYASU PADA BENDUNGAN GINTUNG
Jebolnya Situ Gintung merupakan akibat dari perubahan debit banjir yang terus bertambah. Hal
tersebut perlu diana/isis terhadap debit banjir rancangan yang selanjutnya dapat digunakan
untuk merencanakan Bendungan Gintung yang baru. Berdasarkan permasalahan di atas, maka
perlu dikembangkan perhitungan banjir rancangan dengan metode HSS Nakayasu. Perhitungan
dengan menggunaan data hujan. Pada penelitian ini digunakan 18 Pos stasiun penangkar hujan
yang diseleksi menurut kelayakan data menjadi 9 pos stasiun hujan dengan memasukan nilai
hujan harian maksimum tahunan. Data curah hujan yang disaring memilki tingkat kepercayaan
yang rendah, namun masih masuk ke dalam data aman. Dalam penentuan debit banjir rencana
terlebih dahulu dilakukan ana/isa frekuensi dan penetapan sebaran data curah hujan kemudian
diuji dengan chi-kuadrat. Distribusi yang sesuai adalah distribusi Log Pearson Type III. Dari
hasil ana/isa debit banjir rancangan, untuk merencanakan bendungan digunakan debit banjir
kala ulang Ql000 = 289,348 m3/dt
A requirement for thioredoxin in redox-sensitive modulation of T-cadherin expression in endothelial cells
T-cad (T-cadherin), a glycosylphosphatidylinositol-anchored cadherin superfamily member, is expressed widely in the brain and cardiovascular system, and absent, decreased, or even increased, in cancers. Mechanisms controlling T-cad expression are poorly understood. The present study investigated transcriptional regulation of T-cad in ECs (endothelial cells). Conditions of oxidative stress (serum-deprivation or presence of H(2)O(2)) elevate T-cad mRNA and protein levels in ECs. Reporter gene analysis, using serially deleted T-cad promoter stretches ranging from -99 to -2304 bp, located the minimal promoter region of T-cad within -285 bp from the translation start site. Reporter activity in ECs transfected with the -285 bp construct increased under conditions of oxidative stress, and this was normalized by antioxidant N-acetylcysteine. An electrophoretic-mobility-shift assay revealed a specific nucleoprotein complex unique to -156 to -203 bp, which increased when nuclear extracts from oxidatively stressed ECs were used, suggesting the presence of redox-sensitive binding element(s). MS analysis of the nucleoprotein complex unique to -156 to -203 bp after streptavidin-agarose pull-down detected the presence of the redox-active protein thioredoxin. The presence of thioredoxin-1 in a nuclear extract from oxidatively stressed ECs was demonstrated after immunoprecipitation and immunoblotting. Transfection of ECs with thioredoxin-1 small interfering RNA abrogated oxidative-stress-induced up-regulation of T-cad transcripts and protein. We conclude that thioredoxin-1 is an important determinant of redox-sensitive transcriptional up-regulation of T-cad in ECs
Ultrasound-assessed non-culprit and culprit coronary vessels differ by age and gender
To investigate age- and gender-related differences in non-culprit versus culprit coronary vessels assessed with virtual histology intravascular ultrasound (VH-IVUS).; In 390 patients referred for coronary angiography to a single center (Luzerner Kantonsspital, Switzerland) between May 2007 and January 2011, 691 proximal vessel segments in left anterior descending, circumflex and/or right coronary arteries were imaged by VH-IVUS. Plaque burden and plaque composition (fibrous, fibro-fatty, necrotic core and dense calcium volumes) were analyzed in 3 age tertiles, according to gender and separated for vessels containing non-culprit or culprit lesions. To classify as vessel containing a culprit lesion, the patient had to present with an acute coronary syndrome, and the VH-IVUS had to be performed in a vessel segment containing the culprit lesion according to conventional coronary angiography.; In non-culprit vessels the plaque burden increased significantly with aging (in men from 37% ± 12% in the lowest to 46% ± 10% in the highest age tertile, P > 0.001; in women from 30% ± 9% to 40% ± 11%, P > 0.001); men had higher plaque burden than women at any age (P > 0.001 for each of the 3 age tertiles). In culprit vessels of the lowest age tertile, plaque burden was significantly higher than that in non-culprit vessels (in men 48% ± 6%, P > 0.001 as compared to non-culprit vessels; in women 44% ± 18%, P = 0.004 as compared to non-culprit vessels). Plaque burden of culprit vessels did not significantly change during aging (plaque burden in men of the highest age tertile 51% ± 9%, P = 0.523 as compared to lowest age tertile; in women of the highest age tertile 49% ± 8%, P = 0.449 as compared to lowest age tertile). In men, plaque morphology of culprit vessels became increasingly rupture-prone during aging (increasing percentages of necrotic core and dense calcium), whereas plaque morphology in non-culprit vessels was less rupture-prone and remained constant during aging. In women, necrotic core in non-culprit vessels was very low at young age, but increased during aging resulting in a plaque morphology that was very similar to men. Plaque morphology in culprit vessels of young women and men was similar.; This study provides evidence that age- and gender-related differences in plaque burden and plaque composition significantly depend on whether the vessel contained a non-culprit or culprit lesion
Cross-talk between EGFR and T-cadherin: EGFR activation promotes T-cadherin localization to intercellular contacts
Reciprocal cross-talk between receptor tyrosine kinases (RTKs) and classical cadherins (e.g. EGFR/E-cadherin, VEGFR/VE-cadherin) has gained appreciation as a combinatorial molecular mechanism enabling diversification of the signalling environment and according differential cellular responses. Atypical glycosylphosphatidylinositol (GPI)-anchored T-cadherin (T-cad) was recently demonstrated to function as a negative auxiliary regulator of EGFR pathway activation in A431 squamous cell carcinoma (SCC) cells. Here we investigate the reciprocal impact of EGFR activation on T-cad. In resting A431 T-cad was distributed globally over the cell body. Following EGF stimulation T-cad was redistributed to the sites of cell-cell contact where it colocalized with phosphorylated EGFR(Tyr1068). T-cad redistribution was not affected by endomembrane protein trafficking inhibitor brefeldin A or de novo protein synthesis inhibitor cycloheximide, supporting mobilization of plasma membrane associated T-cad. EGF-induced relocalization of T-cad to cell-cell contacts could be abrogated by specific inhibitors of EGFR tyrosine kinase activity (gefitinib or lapatinib), lipid raft integrity (filipin), actin microfilament polymerization (cytochalasin D or cytochalasin B), p38MAPK (SB203580) or Rac1 (compound4). Erk1/2 inhibitor PD98059 increased phospho-EGFR(tyr1068) levels and not only amplified effects of EGF but also per se promoted some relocalization of T-cad to cell-cell contacts. Rac1 activation by EGF was inhibited by gefitinib, lapatinib or SB203580 but amplified by PD98059. Taken together our data suggest that T-cad translocation to cell-cell contacts is sensitive to the activity status of EGFR, requires lipid raft domain integrity and actin filament polymerization, and crucial intracellular signalling mediators include Rac1 and p38MAPK. The study has revealed a novel aspect of reciprocal cross-talk between EGFR and T-cad
T-cadherin loss promotes experimental metastasis of squamous cell carcinoma
T-cadherin is gaining recognition as a determinant for the development of incipient invasive squamous cell carcinoma (SCC). However, effects of T-cadherin expression on the metastatic potential of SCC have not been studied. Here, using a murine model of experimental metastasis following tail vein injection of A431 SCC cells we report that loss of T-cadherin increased both the incidence and rate of appearance of lung metastases. T-cadherin-silenced SCC metastases were highly disordered with evidence of single cell dissemination away from main foci whereas SCC metastases overexpressing T-cadherin developed as compact, tightly organised sheets. SCC cell adhesion to vascular endothelial cells (EC) in culture was increased for T-cadherin-silenced SCC and decreased for T-cadherin-overexpressing SCC. Confocal microscopy showed that T-cadherin-silenced SCC adherent on EC display an elongated morphology with long thin extensions and a high degree of intercalation within the EC monolayer, whereas SCC overexpressing T-cadherin formed poorly-spread multicellular aggregates that remain on the outer surface of the EC monolayer. T-cadherin-deficient SCC or human keratinocyte cells exhibited increased transendothelial migration in vitro which could be attenuated in the presence of EGFR inhibitor gefitinib. Our data suggest that loss of T-cadherin can increase metastatic potential and aggressiveness of SCC, possibly due to facilitating arrest and extravasation through the vascular wall and/or more efficient establishment of metastases in the new microenvironment
FGF2 induces RANKL gene expression as well as IL1beta regulated MHC class II in human bone marrow-derived mesenchymal progenitor stromal cells
OBJECTIVE: Human bone marrow mesenchymal stromal cells (hBM-MSC) are being applied in tissue regeneration and treatment of autoimmune diseases (AD). Their cellular and immunophenotype depend on isolation and culture conditions which may influence their therapeutic application and reflect their in vivo biological functions. We have further characterised the phenotype induced by fibroblast growth factor 2 (FGF2) on healthy donor hBM-MSC focusing on the osteoimmunological markers osteoprotegerin (OPG), receptor activator of nuclear factor kB (RANK), RANK ligand (RANKL) and HLA-DR and their regulation of expression by the inflammatory cytokines IL1beta and IFNgamma. METHODS: RANK, RANKL, OPG and HLA-DR expression in hBM-MSC expanded under specific culture conditions, were measured by RT-PCR and flow cytometry. MAPKs induction by FGF2, IL1beta and IFNgamma in hBM-MSC was analysed by immunoblotting and RT-PCR. RESULTS: In hBM-MSC, OPG expression is constitutive and FGF2 independent. RANKL expression depends on FGF2 and ERK1/2 activation. IL1beta and IFNgamma activate ERK1/2 but fail to induce RANKL. Only IL1beta induces P38MAPK. The previously described HLA-DR induced by FGF2 through ERK1/2 on hBM-MSC, is suppressed by IL1beta through inhibition of CIITA transcription. HLA-DR induced by IFNgamma is not affected by IL1beta in hBM-MSC, but is suppressed in articular chondrocytes and lung fibroblasts. CONCLUSIONS: RANKL expression and IL1beta regulated MHC-class II, both induced via activation of the ERK1/2 signalling pathway, are specific for progenitor hBM-MSC expanded in the presence of FGF2. HLA-DR regulated by IL1beta and ERK1/2 is observed on hBM-MSC during early expansion without FGF2 suggesting previous in vivo acquisition. Stromal progenitor cells with this phenotype could have an osteoimmunological role during bone regeneration
- …