379 research outputs found

    Interactive calculation procedures for mixed compression inlets

    Get PDF
    The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections

    Analysis of laminar flow between stationary and rotating disks with inflow

    Get PDF
    The laminar flow between a rotating and a stationary disk with inflow was analyzed. Solutions to the dimensionless governing equations are sought by expanding each of the velocity components in powers of inverse radius. The equations to leading order are those for the configuration with no inflow. The subsequent orders yield sets of linear ordinary differential equations. Solutions are obtained for the first two of these subsequent orders. The solutions indicate that inflow tends to increase the magnitude of the azimuthal velocity in the flow between the two disks and to decrease the torque on the rotating disk. For Prandtl number one, an energy integral is obtained which relates the temperature distribution to the velocity distribution for all Reynolds numbers and therefore eliminates the needs for separate solution of the energy equation

    Calculation of oblique-shock-wave laminar-boundary-layer interaction on a flat plate

    Get PDF
    A finite difference solution to the problem of the interaction between an impinging oblique shock wave and the laminar boundary layer on a flat plate is presented. The boundary layer equations coupled with the Prandtl-Meyer relation for the external flow are used to calculate the flow field. A method for the calculation of the separated flow region is presented and discussed. Comparisons between this theory and the experimental results of other investigators show fairly good agreement. Results are presented for the case of a cooled wall with an oncoming flow at Mach number 2.0 without and with suction. The results show that a small amount of suction greatly reduces the extent of the separated region in the vicinity of the shock impingement location

    Combustor fluctuating pressure measurements in engine and in a component test facility: A preliminary comparison

    Get PDF
    In a program to investigate combustor noise, measurements were made with a YF-102 engine of combustor internal fluctuating pressure and far field noise. The relationship of far field noise to engine internal measurement was ascertained. The relationships between combustor internal measurements obtained in an engine and those obtained in a component test facility were established by using a YF-102 combustor, instrumented identically with that used in the engine tests. The combustor was operated in a component test facility over a range of conditions encompassing engine operation. A comparison of the directly measured spectra at corresponding locations in the two tests showed significant differences. The results of two point signal analyses within each combustor, were similar for both tests, indicating that the internal dynamics of the combustor as an acoustic source are preserved in a component test facility

    Flow excursions in a simulated gas-cooled reactor passage

    Get PDF
    Flow excursions in simulated gas-cooled reactor passage

    Core noise measurements from a small, general aviation turbofan engine

    Get PDF
    As part of a program to investigate combustor and other core noises, simultaneous measurements of internal fluctuating pressure and far field noise were made with a JT15D turbofan engine. Acoustic waveguide probes, located in the engine at the combustor, at the turbine exit and in the core nozzle wall, were used to measure internal fluctuating pressures. Low frequency acoustic power determined at the core nozzle exit corresponds in level to the far field acoustic power at engine speeds below 65% of maximum, the approach condition. At engine speeds above 65% of maximum, the jet noise dominates in the far field, greatly exceeding that of the core. From coherence measurements, it is shown that the combustor is the dominant source of the low frequency core noise. The results obtained from the JT15D engine were compared with those obtained previously from a YF102 engine, both engines having reverse flow annular combustors and being in the same size class

    Tesseract: Supersonic business transport

    Get PDF
    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft

    Seeding criterion for nonequilibrium magnetohydrodynamic generators

    Get PDF
    Criterion for magnetohydrodynamic generator seedin

    Transition in a disturbed environment

    Get PDF
    The title of this presentation is the title of our research grant. While transition study is the objective of the work, the results to date are principally on the properties of turbulent boundary layers at low Reynolds numbers are discussed. Testing was done in a small return wind tunnel. Mean boundary layer development is given. The skin friction behavior of the turbulent points are considered. No standard laminar flow was observed. Furthermore, the turbulent mean flow data seem reasonable for the elevated disturbance levels of the tests in the sense that there is no discernible wake component to any of the profiles and that the variation of skin friction with R sub theta is consistent with zero wake strength. The no-grid data are in all likelihood transitional

    Scaling and modeling of three-dimensional, end-wall, turbulent boundary layers

    Get PDF
    The method of matched asymptotic expansion was employed to identify the various subregions in three dimensional, turbomachinery end wall turbulent boundary layers, and to determine the proper scaling of these regions. The two parts of the b.l. investigated are the 3D pressure driven part over the endwall, and the 3D part located at the blade/end wall juncture. Models are proposed for the 3d law of the wall and law of the wake. These models and the data of van den Berg and Elsenaar and of Mueller are compared and show good agreement between models and experiments
    corecore