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I. INTRODUCTION 

The present work is an attempt to find an analytic approach to 

the oblique shock wave - laminar boundary layer interaction problem. 

It is well known that when a shock wave impinges upon a stationary 

object in the flow, there results a complex interaction between the 

shock wave and the boundary layer on the object, in which the press-

ure rise can feed upstream along the object and the resulting inter-

action can, for certain flow conditions, lead to separation (see 

Fig. 1). The thickening of the boundary layer caused by this up-

stream influence disturbs the external flow and it is therefore 

impossible to compute the boundary layer independently of the 

changes in the outer flow caused by the shock. Some free inter-

action conditions must be established to link the two regions. 

The present work attempts to find a solution in the case of a 

two-dimensional flow along a flat plate at zero Incidence. 

The earliest works in this field are experimental. These include 

the works of Ackeret, Feldmann and Rott [1], Liepmann, Dhawan and 

Roshko [2], Chapman, Kuehn and Larson [3] and Hakkinen, Greber, Trill-

ing and Abarbanel [ 4 ] . Later investigators used integral boundary 

layer solutions coupled with an appropriate pressure law. These works 

are based on the theory of Crocco and Lees 1 5 , 6 ] . These methods did 

produce solutions that separated, reattached and met a downstream 

boundary condition of zero pressure gradient flow, but were limited 
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to a small range of Mach numbers, Reynolds numbers and wall temper-

atures. 

Reyhner and Flugge-Lotz [7] carried the approach a step further 

by coupling a finite difference boundary layer solution with a 

Prandtl-Meyer pressure law and successfully obtained solutions 

that included a separated region and met the downstream boundary 

conditions dictated by a zero pressure gradient flow. 

All the previous solutions rely on two basic factors: 

1. Garvine [8] has shown that when a boundary layer is 

coupled to the inviscid stream, the problem assumes an elliptic 

character in that the upstream boundary conditions cannot be com-

pletely specified but rather that the correct solution is dependent on 

satisfying a downstream boundary condition. 

2. Interacting boundary layer solutions exhibit a nodal 

behavior in that they tend to branch away from weak interaction 

solutions towards either separation or an expansive flow (see Fig. 2). 

The advantage of the present work over the previous ones is in 

the improved treatment of reverse flow regions: the customary device 

of eliminating or modifying the time-like terms in the streamwise-

momentum and energy équat.ons in this region [7, 9, 13] has been 

eliminated by adding a time-like term to both sides of these 

equations in the backf low region, thereby avoiding the change of 

the basic nature of these equations, as called for by the pre''-ious 

methods.
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The main advantage of using the method employed in the present 

work Is that it provides a solution to a given case in a short time 

(usually about one minute of computer time using the UNIVAC 1110) as 

opposed to considerably longer time when a Navier-Stokes procedure 

is employed using present technology computers. This has a strong 

bearing on cost considerations, yet the accuracy of a solution as 

produced by the present method is good enough for engineering pur-

poses. 

The present effort assumes that the Prandtl-Meyer relation 

adequately represents the external flow and the free interaction 

condition between the boundary layer and this external flow is 

through coupling the two regions along the displacement thickness 

surface by a relation between the external flow turning angle and 

the stream-wise derivative of the displacement thickness. Implicit 

in this work is the assumption that the boundary layer equations are 

applicable throughout the computational regime, which excludes large 

separation bubbles, where the normal pressure gradient is no longer 

negligible. 

There are three parr aeters wt. ch are of fundamental importance 

in this problem: the starting point of the interaction, the location 

of the idealized shock, and its strength. Knowledge of the latter 

two of these quantities does not permit the knowledge of the third, 

and hence iterative calculations must b€ performed to find the third 

parameter, namely, the starting point of the interaction. The
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determination of this parameter is done through meeting the downstream 

boundary conditions, which are: (a) weak interaction far enough down-

stream of the shock impingement location; (b) a downstream pressure 

which is compatible with the one predicted from purely inviscid con-

siderations. These two conditions necessitate the employment of two 

iteration parameters, such that only a unique combination of them 

yields the correct downstream conditions. Adopting a combination of 

the work of Reyhner and Flugg-Lotz [7] and of Dwoyer [9], the two 

iteration parameters employed in the present work are the starting 

point of the interaction (assuming knowledge of the shock impingement 

location) and the second derivative of the displacement thickness at 

the shock impingement point. 

The boundary layer equations are solved by a linear implicit 

finite difference technique [10]. 

Special treatment is applied for the backflow region, consisting 

of adding a (-2pu	 term to both sides of the streamwise momentum 
ax 

equation and a (-2c Pu --) term to both sides of the energy equation, 
p	 ax 

such that diagonal dominance of the resulting tridiagonal matrix is 

assured. This method is more accurate than the one used by Reyhner 

and Flugge-Lotz [71 and later by Dwoyer [ g ], which consisted of re-

placing the time-like terms in the streamwise momentum and energy 

equations by one-tenth their absolute values. No such artificial 

terms appear in the present work. The stabilizing method employed 

here is based on the successive iterations performed on each down-

stream station, so that by the time a station is converged (i.e.,
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the free interaction condition is met) the streatnwise momentum and 

energy equations are restored to their correct form to within a small 

prescribed tolerance.
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II. LIST OF SYMBOLS 

a	 speed of sound, a = V'yt, [ m-1 sec 

C	 Chapman-Rubesin constant (eq. 21) 

C f	 skin friction coefficient, Cf
Co 

c	 specific heat at constant pressure,
cal 

1 

p

cal c 
V	

specific heat at constant volume, kg.°C1 

f	 exponent in power law for the viscosity 

g	 exponent in power law for the thermal conductivity 

G	 function of y used in Prandtl-Meyer calculation, G =,/E 

counter for mesh points in the x-wise direction 

JD	 J at the last computational station, X = X downstream 

K	 counter for mesh points in the y-wise direction 

'coefficients in the x -iteration procedure 

k	 thermal conductivity [ cal
	

]; also counter for mesh 
msec • C 

points in the y-wise direction (will be clear according to 

context) 

L	 reference length, [m] (L = x) 

M	 Mach number

m number used to divide AX to reduce mesh size in x-direction 

p
N 

pressure,	 [-J 

P nondimensional pressure, P =
Po 

P 
pressure at the downstream station 

Pr Prandtl number, Pr =

6 
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q	 heat flux 
'ec 

also quotient in power series for AX in the 

case of variable mesh size (clear from context) 

inN 
R	 gas constant, k

g 

R	 Reynolds number based on x, R 	
0 

x 
e	 e	 p 
x	 x	 0 

t	 temperature, EeC] 

T	 nondimensional temperature, T
0 

T	 temporary temperature vector used in backf low region 

calculation 

T	 intermediate solution vector for the temperature at a 

streamwise station, improved by each iteration at that 

station 

U	 streamwise velocity, [--] 
sec 

U	 nondimensional streatnwise velocity, U = 

U	 temporary streamwise velocity vector used in backflow 

region calculations 

0	 intermediate solution vector for the streamwise velocity 

at a streaniwise station, improved by each iteration at 

that station 

v	 normal velocity, [—fl--] 
sec

p vL 
V	 nondimensional normal velocity, V =

p0 

x	 streamwise coordinate, [m]
p0x	 () 

nondimensional streamwise coordinate, X =	 2 = - puL	 R 
00	

e 
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x	 streamwise location of the beginning of strong interaction 

Xsh	 streamwise location of the idealized shock impingement on 

the plate 

y	 normal coordinate, [m] 

Y	 nondimensional normal coordinate, Y = 

Greek Symbols 

pressure gradient,	 =	
c 

dx 

Y	 specific heat ratio, 	 y = —i (= 1.405 for air) 
C 

6	 boundary layer thickness, [m] 

6*	 boundary layer displacement thickness, [m] 

AX	 streaxnwise mesh size 

AY	 normal mesh size 

P	 viscosity, ' kg 
tnsec1 

v	 Prandtl-Meyer angle, [rad] 

flow turning angle, [rad] 

T	 shear stress, [N1] 

P	 density, 

E	 tolerance 

nondimensional normal coordinate used for initial profiles, 

-
6
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Subscripts 

o	 evaluated in the free stream at x 0 

Go	 evaluated at the outer edge of the boundary layer 

a	 adiabatic 

c a computed value (i.e., 6*") 

d,downstr. evaluated at the last streamwise station 

f evaluated at a far downstream or final station 

g a guessed value (i.e.,	 6*") 

i a value for an iterated quantity at the ith iteration

INV	 a quantity evaluated through inviscid considerations 

(i.e., P1) 

initial a quantity evaluated at the initial streamwise station 

j	 evaluated at the jth streamwise station for any k 

k	 evaluated at the kth normal station for any j 

j,k	 evaluated at the (j,k) mesh point 

i x	
evaluated at the streamwise station corresponding to x 
0  

w, wall	 evaluated at the wall 

x	 derivative with respect to x. Also, evaluated at x (clear 

from context) 

x	 evaluated at x = x 
0	 0 

x 
sh	 shock 

evaluated at x = x 	 (shock impingement point) 



Superscripts 

total derivative with respect to the appropriate independent 

variable 

*	 nondimensional quantity, used for p, k and p 

-	 nondimensional quantity used for 6 and 6*

10 



III. GOVERNING EQUATIONS 

The flow field is divided into a boundary layer and an external 

flow. The external flow is handled as a Prandtl-Meyer edge con-

dition for the boundary layer. Although the Prandtl-Meyer relation 

is isentropic and correct only for expansions, it can be used for 

weak compressions since the change in entropy is proportional to the 

cube of the pressure change through compression waves, and this is a 

very small quantity when proceeding from one station to the next 

while marching streamwise through the mesh points. The presence of 

the shock is compensated for by changing the reference Prandtl-Meyer 

angle	 n the computation procedure arrives one station downstream 

of the shock impingement point. The amount of change in the reference 

angle is automatically determined by the combined strength of the 

assumed shock and expansion fan and is corrected while the latter is 

iterated during the computational procedure. 

Figure 1 shows the physical phenomenon treated by the com-

putational procedure, indicating the important locations and geo-

metrical features. X is the location where the compression waves 

first appear, and consequently where the pressure begins to rise from 

its upstream value. 

This compression turns the flow away from the wall with sub-

sequent separation possible. This is followed by the combination of 

an oblique shock and an expansion fan at Xh• This is the location 

11
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where the boundary layer edge is most removed from the wall, and 

where the flow turns most sharply towards the wall. The distance 

between x 
o	 sh 

and x	 is the measure of the extent of upstream influence 

present; the stronger the shock the larger this distance, and hence 

the larger the resulting backflow region. Further downstream, a 

second set of compression waves turns the flow back parallel to the 

wall, followed by reattachment and gradual reversion back to a weak 

interaction region. Since the present work does not incorporate a 

normal momentum equation (and hence assumes mild flow deviations 

from the flat plate and constant pressure normal to it) only small 

separated regions can be treated by the present approach. 

III.a Boundary Layer Equations 

The basic equations for the compressible, steady , two dimensional 

boundary layer, assuming a constant Cp, are 

f(L^(ri=-VQ)	 (1) 

(2) 

A perfect gas is assumed, for which 

^ =roe J^-	 (4)
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Power-law relations are used for both the viscosity and the 

thermal conductivity:

(5) 

kk0(*f	 (6) 

where p and k are respectively the viscosity and thermal con-

ductivity at the reference temperature to . A value of 0.76 has been 

used for both f and g. 

The boundary conditions are 

u (X, 0) = 0 

v (x,o) = 0 (for impermeable wall) 

v (x,o) = v 
w 
(x) (for suction) 

u (, oc ) = u (x) 

t (X, 0) =
constant wall temperature case 

t (x,) = t(x) 

or

-k—
y y=o

constant wall heat flux case 
t (x,x)	 t(x) 

where u(x) and t(x) are furnished by the solution of the inviscid 

outer flow, to be discussed later.
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III.b Dimensionless Forms and Reference Quantities 

The dimensionless variables employed in this work are chosen so 

as to achieve two goals: (a) creating flow variables that are 

most convenient for the finite difference procedure in which they are 

to be used; (b) creating as few parameters as possible, to maximize 

computational convenience. 

With these in mind, the following dimensionless variables are 

employed: 

Lb 	 __  
I) =	 v - ,'	 —	 /	

S 
0 

k*= 'j=>f I= C[
	 - 

hCb 

where all quantities with subscript o are evaluated in the free 

stream at x, the point where the strong interaction starts, and L o 

is a reference length in the direction normal to the wall. 

With these new variables, the dimensionless equations now 

become

fI P 1L\r(u+v )=- /bac1X4y 

*j)	 *y)_ 
— 

dy	
0 (2a)
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u^v,--- (1	 +(k)^ 
( 

,ZA 
*= -r f 

where the free-stream Mach number at x is 

H-
and the Prandtl number at the same location is 

p1A.A 
The corresponding dimensionless Boundary Conditions are: 

U(X,O) = 0

f 0 (impermeable wall) 
V(X,0) = 4

	

V (X)	 (suction) 

U00 

(X) 
U(X, o ) =	 = U (X)


U
0

(3a) 

(4a) 

(5a) 

(6a)



For constant wall temperature 

T(X,O) = Tw 

T(X,co) =
	 t	

= T00(X) 
o  

while for constant heat flux q 

_k*	
= qL 

ay Y=O kt 
00 

T(X, cx)	 T(X) 

Note: In all subsequent equations the asterisk used to indicate 

dimensionless density (p*), thermal conductivity (k*) and dynamic 

viscosity (i*) will be dropped, with the understanding that these 

variables are dimensionless as defined above. 

The following quantities are given in the free stream at 

x = X 0 : M 
0	 0 
, p , 

0	 0	 0 
, t and k . Based on these, the reference 

quantities are defined as follows: 

Velocity: 

Static pressure: f&=Fqzf.-. 

The reference length, L, is chosen as the distance from the leading 

edge of the plate to the location of the start of the strong inter-

action, namely 

L.=X0 
which leads to the following dimensionless coordinates: 

0	 Y Re 	 X0

16 
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where

- RLL0X, 

III.c Edge Conditions 

The edge conditions necessary for the solution of the governing 

equations are calculated from the Prandtl-Meyer relation which is 

strictly valid only for isentropic expansions. However, the 

Prandtl-Meyer relation can be used for weak compressions since the 

change in entropy is proportional to the third power of the change in 

pressure for compression waves, and this entropy change is very small 

when proceeding from one mesh point to the next one while marching 

downstream during the computational procedure. This approach has 

been found also by previous authors to work reasonably [7,9,13]. 

The main difficulty in the solution of the governing equations (1 - 6), 

is that the pressure, p, is one of the unknowns, since in the case of 

a strong interaction the viscous and inviscid regions mutually 

affect each other and the pressure field is a result of this inter-

action. This is the basic difference between strong and weak inter-

action cases, since in the latter the pressure field is dictated by 

the inviscid flow, so it becomes a known variable as far as the 

viscous layer is concerned. In the present situation an additional 

equation is necessary which expresses the mutual determination of 

the pressure field by the viscous and inviscid regions. This is
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done by coupling the two regions along the displacement surface (see 

Appendix Al) by the relation 

t'(t) = # = r * 4#()	 (7) 

where the index refers to the conditions at the outer edge of the 

boundary layer.	 is now used in the Prandtl-Meyer relation through 

the Prandtl-Meyer angle v:

(8)

 where 

ig4'71 
-?= Ji// 7#/ I1'-1

(H..1) - (9) 

and v 
0 

is the reference Prandtl-Meyer angle. The value of v	 is that 
0

for N until one station downstream of the shock impingement point, 

where it assumes a new value that depends on P  through the combination 

of incident shock strength and expansion fan such that It also guaran-

tees continuity of pressure across the shock impingement location. 

This new value of v is updated during the iterations performed on the 

shock strength plus expansion fan, as part of the computational pro-

cedure. Once equation (9) is solved for 
MCO 

(see Appendix B), the edge 

conditions may be evaluated as follows: 

7o-o 
1+
r-i 2 

Mc	
(10) 

I 2M.0 

POO =
(11) 



C) _ 
3.o	 (13) 

and the pressure gradient

fi 
ig 
d	 7

1+
. ;' (H.-	 (14)/) -

d 
In equation (14) the term 

d 	
appears, which has the following 

value: 

C& 	 ReXp _____  
(c*)%	

(14a) 

The first term on the R.H.S. vanishes for a flat plate. It should 

be noted that the second term contains both 6* and x . Hence 
0 

changes in both influence the computation of the edge flow para-

meters, independently of each other. This has a strong bearing on 

the method of iterations employed in the present work which is 

basically a double iteration loop where 6* and x each change while 

the other is frozen in its latest value.

19
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IV. METHOD 0pt SOLUTION 

IV.a Difference Equations 

The basic equations, eqns. la - 6a, will now be rewritten in 

finite difference form. A linear implicit form has been chosen, 

having the distinct advantage that all equations are linear in the 

various unknowns, thus at each step the momentum equation may be 

solved for the streamwise velocity values at the new station, 

followed by the energy equation yielding the values of the temper-

ature at this new station, then the density is obtained from the 

equation of state, and based on these the continuity equation is 

solved to provide the normal velocity at the new station. Finally 

the viscosity and thermal conductivity are found and the procedure 

may be advanced one step downstream. Backward differencing is 

employed for the streamwise derivatives and central differencing is 

used for the normal derivatives in both the streajnwise-momentum and 

the energy equations, while backward differencing is used in both 

directions in the continuity equation. 	 The differencing for both 

the momentum and energy equations is correct to order (Y) 2 in the 

normal direction and to order AX in the streainwise direction, whereas 

for the continuity equation the differencing is correct to orders 

AY and AX. Since the truncation error is of second order in the 

streamwise direction, a relativelylarge number of mesh points has 

been employed, resulting in a fine mesh. The difference equations 

20
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in 

to follow are stable for all mesh sizes so long as Ti > 0. 

Finite difference formulation of the governing equations; 

J. Uj+hUJ . V )J#!k(Jj A 	 AX e(ôy' J	 fl• 4


{ UJ1_VIt#VJ.$k_ I1+14 k+I_.1CAJUJ+Ih+I (J+ h—Il  
(4y5	

(lb) 

	

2(4y) 
j[	 2	

J 

.k,k4t Ui.,,, .?jk.I 0Jk*, + f i.'ksa	 Vj,, A
= 0	 (2b) 

AZ 

7 si,k 1 k	 .	 kJ	
LI	 FiNPj 

AX	 ilk	 2('4y) j t j,, It AX + 

JT,1+g -27  L	 (4	
t 1Lit —kJk1

a 
kst Thi, k- Si + frl: (r—i),,k IUJ+! 11 -

(3b) I 2(4)1) 	 (A Y) j 

Pj+I
(4b) 

(T4+, f	 (5b) 

k	 :::(1;tp,kJ)!
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IV.c Matrix Form of Equations 

The momentum equation is rewritten in the form: 

I	 (x)	 (A)')	 Y-	 L 
r-s v L 	 + /j,k.,	

u 
AL 44A	 _.iLhUaJ	 I Pi (ic) [a?A.(4ydy) (4,:)t	 ya J k4k#i	 Al	 tfbf 

This equation, written out for all k, assumes the form 

pf fl I 

*(a p 2.	 IL
	

4,t 

.1,1 

S - 

uJ 

0	 S 

t1J._ 

	

I'
	

01147-Q W
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Ii 

where 

-	 y4A,k 12A,k-;) 

	

2(a)')	 (4yJ	 y) 
-	 + ! k	 4r 

Y,k V.h,i 	 P—L) 
2(y)	 (A y)2 	 4(sy)' 

it Vit, it PJt,_PJ 
Lu 

This matrix equation is used to solve for Uj+l k using a tridiagonal 

matrix inversion technique. 

The energy equation is written as: 

r_	 j k	 +	 (4,k3f 4__,)1 
Z(4y)	 F (d Y) 	 4(4 yP j7+1k1 + 

+ L4r P,(y) 
kJA	 a  

[ 
a (4)') ' (y -	 (4 y) J 

7 Il) + I =

& 

-Li/ 2. 
' ilk	 + (—i)	

(A y) j + 

P	 Ii 
.j,k "J,k 41

(3c) 

[
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WHtten out for all k for the case of constant wall temperature, we 

get 

X^ Tw-

r4	 c 
S - - 

4	
Pit

	 fl'k

- - 

/ 

0	 -	 :-	 fl'q I..'-'

where

- eJ,kVf,	 f ____ j_ (k,-1k-.?) 
k	 e(y) P, (4)')	 fk 

- f 1 k UJ1t	 e 
4X 

Ii. k y  
Lk-	 ( y) Ph (4))t P,

IL 

ell	 z
] + 

k

1! ___ 
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This is solved for Tj+l k using, again, a tridiagonal matrix 

inversion. Now we can find from the perfect gas law 

rj^,, ,	
(4b) 

Next the continuity equation is solved to yield 

- (2c) V	 v+E''\&AX 
This solution is started at the plate (y =O) where V 1	 0 (or 

V 10 = V(X)) and marched out to the free stream. Finally, the 

viscosity and thermal conductivity for the (j+l)st station are 

computed: 

Ai, k = ( 7 k)

	
(Sb) 

kj+"k (T ji -,q, k )	 (6b) 

This completes the solution for the (j+l) St station and the method 

is now applied to the next downstream station.



V. COMPUTATIONAL PROCEDURE 

V.a Initial Profiles 

The initial velocity profile is generated by an iterative pro-

cedure that is started with the Pohihausen polynomial for the flat 

plate laminar boundary layer. 

u	 =2'-Z3+'Z,4
	

(15) 

where 

In terms of the Y-coordinate, 

I,,- Xy 
t 

where 6 is tentatively taken at its Mach zero value 
initial 

- c-. ,, fpXr.tAi - 11._i V j 
V 

The initial station, x initial' is the predetermined station where 

the computational procedure starts. Hence 

()L
0\4 

and in finite difference form 

ky	 ,	 x)4	 (15b) 

26
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with k going from zero up to kf.ma, corresponding to the last 

mesh point ir% the normal direction. 

The initial representation of the temperature profile uses the 

Crocco relation between temperature and velocity for a flat plate 

with zero pressure gradient which is strictly valid only for Pr = 1: 

ro	 -) LJ +-j-- M u	 (I - u)	 (16) 

which becomes, in finite difference form, 

7k4+(1f)Ufl+	 (i-u) 
Since these profiles do not correspond to the situation in the flow 

field (M 1 0, Pr	 1) at our initial station, they are refined 
iteratively by using them to solve the equations of motion for one 

step downstream with zero pressure gradient, and then using the 

resulting profiles as new initial profiles. This procedure is 

repeated 10 times to ensure realistic initial profiles that are 

solutions to the difference equations and thereby allow smooth 

marching downstream from them. 

V.b Treatment of Reversed Flow 

The matrix U—equation was found to be



S

-	 28	

fu!4fF 

^3 

al 

0(3	 (j$f3 

	

- - a	 - 

- a	 - 

• - - S	 - 

'hI	
(, ^L	 ('j+l,blh.t 

- 

where

_,a\'( 
&	 a(dy)	 (4)1)2 

-	
-. J,k vj it-  

(4y)
_  

k	 Z(Ay)	 t. 

_ cfk

4Y

+1 

43 

&1LU0.

(17) 

(18)
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In order to maintain numerical stability of this tridiagonal equation, 

diagonal dominance (DD) must be preserved. This means that the 

following must be maintained: 

,./* +A + 0 , >0 
or

AX 

This shows that DD will be lost when Ujk < 0, that is, in a 

reversed flow region (see Appendix A2). 

In order to avoid this problem, the usual method employed by 

several authors (C.F. Ref. 7) is to drop the time-like term 

pu.0 for u < 0, which provides marginal stability: 

+ k + Q k = 0, or, to assure that a + 8k + 0 k > 0, the term 

pu . 0 is replaced by O.lIpuu x wherever pu < 0. This means that 

the term	 'k'k  in the expression for 8., eq. (17), is replaced 

O.lP.	 ju. 
by 
	 j,k	

Physically this implies adding a small artificial 

convection term to the momentum equation. The claim usually made is 

that this creates only a small additional error as compared with 

that caused by the neglect of the puu term, and it guarantees DD. 

However, both of the above methods actually change the basic 

nature of the momentum equation in the backf low region, and this 

should be avoided. 

The method employed in the present work is to add
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2p k  k

to both sides of the momentum equation, eqn. 

(lc), whenever Ujk < 0. By doing so it is guaranteed that the 

momentum equation remains unaltered in the backflow region. There 

is a difficulty in doing this, however, since the term added to 

the R.H.S. of the equation in its matrix form, i.e., to ck, 

eqn. (18), contains the term (Uj +lk) which is not known (the 

{Uj+lk } vector is the unknown of the matrix equation). This 

problem is solved by taking advantage of the fact that there are 

iterations performed at each 3-station. Thus, a term 

2P j , kUjk IV  

U  is added to	 for Ujk < 0, where 'U" k is the solution 

Uj+lk obtained from the previous iteration on the J+lst station. 

This term becomes closer and closer to the correct value, U. 
j +1, k 

with each iteration, and by the time the last iteration on the 3+1st 

station is reached, the following exists: 

UIk
-1 

V14,,k 

and hence 1is within c from Uj+lk thereby guaranteeing that the 

momentum equation at each 3-station is correctly represented whether 

in the backflow region or not. 

By employing this approach, the effective result'is that the 

term	 is replaced by j,kj,k' for Ujk < 0, thereby 

guaranteeing DD, and yet no alteration of the momentum equation is 

caused as a consequence.
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Asinijiar situation holds for the energy equation: 

The matrix form for the energy equation was found to be 

where 

k -
	 k VJ -	 i1k + 

j2'_-	 2	
(19)
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+Sa Uj ' k
T1	

(20) 

Again, to maintain DD it is necessary that 

C4 	 + dfZk >0 
which means that the following must hold: 

If o
2p. k
	 k Hence the term (-	 ' )Tj+lk is added to both sides of 

the energy equation, eq. (3c), so as to keep the energy equation 

unchanged in the backf low region. This time a temporary T  vector 

is needed to multiply the above term when adding it to 4, eq. (20). 
The solutions Tj+1 k of the successive iterations on each J station 

are used for this purpose, and by the time the last iteration is 

reached, station J+l is converged and the relation 

r..J 

j+•. k 

is guaranteed, thereby keeping the energy equation unaltered in the 

backf low region and yet maintaining DD there. 

V.c Iteration Logic 

As can be seen from the Prandtl-Meyer equations employed in the
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present work, eqs. 7 - 14&, the edge conditions are based on 6* and 

its 1st and 2nd derivatives. Since 6* is dependent on the velocity 

and density profiles, which are themselves dependent on the edge 

conditions, it is obvious that an iterative approach is necessary. 

Hence the computational procedure is as follows: 

H 
1. An initial guess is made for 6*, denoted by 

g 

2. This guess is integrated numerically to 
obtain W. (See Appendix Cl) 

3. 6*" and 6*' are used to obtain the boundary layer 

edge conditions through the Prandtl-Meyer procedure, 
eqns. 7,8,9,14 and 14a. 

4. The edge conditions are used to integrate the 
boundary layer equations at the new x-wise Station. 

5. From the new profiles, a value for 6* is 
computed, denoted by 6*. 

6. 6* is twice numerically differentiated to obtain 

(See Appendix C2) Since a three-point back-

ward differentiation is used here, a numerical 
problem exists at station J + 1, where the pro- 

Xh 

cedure smoothes out the jump in 6* that is induced 
at J x . This may account for the ' local instabilities 

sh 

which occurred at station J. + 1 and continued for 
x
sh 

a few stations downstream of it, as will be seen in 
the figures. 

7. 6" and 6*" are compared. If they do not agree to 

within a required tolerance, a new guess for 6*" 

is made, using a Newton-Raphson procedure (see Appendix 
C3), and a return is made to step #2. When 6*" and 

agree to within the specified tolerance, the
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present x-wise station is considered solved and 
the whole procedure is marched one step down-
stream, with the last (cS*") used as the first 

guess for cS" at the J + 1st station. 

The above procedure begins with the supplied initial profiles 

and marches downstream until no further changes in the pressure field 

occur, indicating that the shock wave-boundary layer interaction is 

over.

Two distinct cases may occur at the downstream region (i.e., 

far enough downstream for the effect of the shock to diminish); 

a. the pressure does not acquire a steadyvalue, but, 

rather, either goes rapidly to zero to increases rapidly; 

b. the pressure has a steady value, which, however, is 

different from the one physically occurring (determined by the shock 

strength). 

The present work employs two distinct procedures to correct 

these behaviors and to pick successively better branches. 

In case (a), the branching solutions are controlled by fixing 

5*" at the station corresponding to the shock impingement location, 

J 
x	

(see Appendix D). The perturbation in 6*" is created by using 

sh 

the value at the last station before J 	 , multiplied by a parameter 
sh 

called PARDEL. This in effect means introducing a pressure gradient 

discontinuously at this station, th;reby triggering a branch. The 

successive values for 6*" (through PARDEL) are determined by a 

Newton-Raphson procedure such that the correct 6"	 leads the corn- 
Jx 

putational procedure to a level branch, i.e., cons 
l
nt pressure at
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the downstream weak interaction region (see Appendix C4). Figure 2 

shows the effect of cS*"	 on the branching behavior. Along with this 
ix

sh 
branch control, v is also changed at J + 1 to keep a constant 

0	 Xsh 

pressure across J Xh , where the shock and accompanying expansion fan 

are located. The iteration procedure described above (steps 1 - 7) 

is not performed at station J	 to keep the discontinuity in press- 
sh 

ure gradient introduced by PARDEL. 

In case (b), the branching solutions are controlled by fixing 

a new value for x (see Appendix D). The closer x is to the point 

where the ideal shock impinges on the boundary layer, (xh), the 

weaker the resulting interaction and the weaker Pf9 while the further 

x is upstream of the shock impingement point, the stronger the 

resulting interaction and the stronger PC Hence too compressive 

branches are corrected by moving x downstream, closer to Xh 

while too expansive branches are corrected by moving x upstream, 

further away from x 
sh	 o 

(see Appendix E). Changing x changes Re 

of course. Figure 3 shows the effect of x on the branching 

behavior, indicating that minute changes in x suffice to impose a 

large change in P f . This behavior has been indicated also by 

Reyhner and Flugge-Lotz [7. While an x iteration is performed, 

"	 is frozen at its latest value, and vice versa, Usually only a 
Jx

sh 
few $*" -type of iterations are necessary to obtain a steady 

h 

downstream pressure. Once this is attained, all further iterations 

are of the x -type, with 6*" frozen at its latest value. 
0	 Xh
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The accompanying flow chart (Fig. 4), explains the computational 

procedure, and Fig. 5 shows how 6*" varies with x. This figure 

shows regions of both strong and weak interaction within the same 

case. For the weak interaction it is possible to use the relation 

for the displacement thickness in the case of a compressible laminar 

flat-plate flow with Pr = 0.72 [20] as a check on the numerical 

results: 

x i^_e-x
=c—[I.7zo8	 I) 

+O.e873( zr_ I)t1.]	 (21) 

where C is the Chapman-Rubesjn constant C = WW 
which is unity in 

our case, since T = 1.0. 
w 

Inserting numerical values into equation (21) and using the 

fact that 
t 
w = 1, yields, for the particular Re 	 of Fig. 5 (in 
CO	 sh 

dimensional form - a ll lengths in meters): 

	

* 8.437xI0ji	 (22) 

and 

t- 2 .l374>IO"X	 (23) 

and, with 

xfr-!)M 
equation (23) becomes 

d 2 r*	 ..312. 

	

=-SL4O7 (T- 1)
	

(24)
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where the numerical value of Ax for the particular case of Fig. 5 

has been used. 

It is observed that the strong interaction case sharply deviates 

from the weak one between J	 60 and J	 150. The oscillatory 

behavior between 3 = 60 and J = 85 is attributed to the inherent 

numerical instability that results from numerical differentiation. 

As may be observed in Fig. 12 the boundary layer thickness (and 

hence also 6*) exhibits a mild oscillatory behavior over the region 

corresponding roughly to 60 < J < 85. (Emphasized by heavy dots.) 

When such a curve is twice numerically differentiated, the 

result may lead to unstable oscillations, since the 

nature of differentiation is to amplify any existing instability. 

However, the iterative procedure used in the algorithm always 

managed to stabilize the computations based on 6*" since the effect 

of the iterative procedure is to produce an average trend line of 

6*" in the oscillatory region. Downstream of J ' 6*" > 0(dis- 
0 

regarding a few isolated points where 6*" < 0 as a result of local 

numerical instabilities downstream of 3	 , where reattachment 
x
sh 

occurs), which is characteristic of strong interactions (see also 

Fig. 19). Around J = 115 the strong interaction begins to decay 

and approaches the downstream weak interaction region asymptotically.



VI. COMPUTED RESULTS 

Several examples have been run to test the method used in the 

present work. Common to these examples are the following flow 

parameters: N
o
 = 2.0, T

w
 = 1.0, Pr = 0.70, and Re sh = 3.89 x 105, 

corresponding to an altitude of 16,500 meters. The only parameter 

that was varied from one case to the next was the overall pressure 

ratio, Pf 9 which in effect, selected the shock strength. Examples 

havealso been run with an adiabatic wall CT = 1.67) but became un-

stable for shock strengths corresponding to P  > 1.025. 

All computations were initiated at Xinitial = 0.50, with 

constant step sizes in both X and Y directions, the magnitudes of 

which changed during the execution of the program according to 

the current value of x, such that the final step sizes were 

determined by that x which produced the correct branching solution. 

The mesh size consisted of 200 points in the streamwise direction 

and 72 points in the normal direction. Increasing the number of 

points above 200 in the streamwise direction did not produce any 

change in the computed results. 

Figure 6 shows the development of the streamwise velocity pro-

files over the flat plate. The separation develops smoothly but 

the reattachment is abrupt, with the first reattached profile 

exhibiting a reduced velocity region in the upper part of the sub-

sonic section of the boundary layer (refer to corresponding profile 

38
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in Fig. 8). Since this is the profile immediately downstream of 

shock impingement, the reason for its shape is perhaps the local 

favorable pressure gradient that occurs at this location (Fig. 13), 

which in turn may be the result of the numerical calculation of 

*" that smoothes out the jump in 	 at 3. The profiles further 

downstream do not exhibit this bulge but their shape, possessing an 

inflection point, indicates a gradual recovery from this profile. 

The fourth profile after reattachment exhibits a small reversed 

flow near the wall. This tendency of an attached flow to re-separate 

has been observed also by Reyhner and Flugge-Lotz [7] and attributed 

to the combination of the Prandtl-Meyer relation and the assumption 

- = 0, both of which are deficient in the reattachment zone. The 

method used here to eliminate this problem was to replace eqn. (14) 

beyond reattachment by a simple backward difference, 	
= 

dX	 AX 

Figure 6a is an enlarged detail of Fig. 6, showing the separation 

region. 

Figure 7 is a comparison of streamwise velocity profiles for 

the cases of incipient separation (P f	 1.12) and of a separated 

region (P f = 1.31). It is observed that the thickening of the 

boundary layer is considerably more pronounced in the case of the 

separated region, as expected for a stronger interaction (stronger 

shock). 

Figure 8 shows the development of the Mach number profiles for



P  = 1.31. It is observed that the subsonic part of the boundary 

layer is roughly its inner 30% upstream of the shock impingement 

region and this changes to approximately the inner 40% of the bound-

ary layer thickness downstream of this region. As the shock 

impingement region is approached, the subsonic layer increases up 

to about half of the boundary layer thickness, and decreases again 

after the shock impingement (see also Fig. 12). 

Figure 9 shows the behavior of the normal velocity profiles. 

It will be observed that a part of the strong interaction region, 

starting at J=82 may be subdivided into five regions: 

Region I : 82<J<90, with negative normal edge velocity; 
Region II : 91<J<97, with positive normal edge velocity; 
Region III : 9873<101, with strong negative edge velocity; 
Region IV : 102<J<109, with strong positive edge velocity; 
Region V	 : J>llO, with negative edge velocity, gradually 

diminishing to zero. 

The behavior in Region II is a consequence of the flow over the 

separated region, which has a component directed away from the wall. 

The behavior in Region III stems from the rather sharp velocity 

component directed towards the wall at the region of reattachment, 

while the behavior in Region IV is a result of the sharp turning 

of the flow away from the wall so as to become parallel to it 

downstream of reattachment. No explanation has been found for Regions 

I and V, except that the gradual diminishing of normal velocity in 

Region V is a demonstration of the slow switch to weak interaction, 

as can clearly be seen in Fig. 5. Since the strong interaction 

region is noted for its high irregularities (Fig. 5) and since the
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normal velocity calculation is very sensitive to these irregularities, 

it is not helpful to analyze the normal velocity profiles in great 

detail. 

Figure 10 shows'-the development of the static temperature 

profiles in the case of a cooled wall. The dissipation in the 

boundary layer causes a rise in the temperature, which is then re-

duced near the wall by the cooling (T = 1.0). 

Figure 11 shows the development of the stagnation temperature 

profiles. The reduction in stagnation temperature through the 

boundary layer is caused by the conduction of heat from the bound-

ary layer into the wall (cooled wall case), it is observed that 

the reduction in stagnation temperature is less in the separated 

region than in the attached regions indicating a lower heat transfer 

rate for the separated region than for the attached flows. 

Figure 12 shows the development of the stagnation pressure 

profiles. The decrease in stagnation pressure is due to reduced 

velocity in the boundary layer. Note that the decrease is sharp in 

the supersonic part of the boundary layer and becomes smaller and 

smaller through the subsonic layer, until, at the immediate vicinity 

of the wall the stagnation pressure approaches the local static 

pressure. In the separated region, because of the small recirculation 

velocities, the stagnation pressure retains nearly its wall value 

further into the flow. Also indicated in Fig. 12 is the behavior 

of the boundary layer thickness over the plate (dotted). The most 

upstream part behaves in the manner of a flat plate profile. The
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boundary layer thickness then shows a moderate increase downstream 

of x becoming sharper as the shock impingement location is 

approached and attaining a peak in the vicinity of shock impinge-

ment. Downstream of reattachment there is a rather sharp decrease 

in boundary layer thickness, forming the well known "neck", and 

further downstream a flat-plate-type of profile is attained again, 

indicating transition from strong to weak interaction (see also 

Fig. 19). The heavily dotted points indicate the regions where 

the boundary layer thickness profile wiggles the most (as a result 

of numerical instabilities) and the region dpwnstream of x 0 is 

causing the oscillatory behavior of *" at that zone (see Fig. 5). 

For comparison, a compressible boundary layer thickness profile on 

a flat plate has also been included (dashed line). The computed 

thicknesses are slightly below the theoretical, but close enough so 

that the computed thicknesses are credible. 

Figure 13 shows a typical static pressure profile over the 

plate, as produced by the program. It starts with a constant value 

corresponding to the upstream boundary conditions, followed by a 

relatively moderate increase starting at x. This continues until 

a short plateau is attained downstream of the point where the shock 

impinges. At the second compression region an abrupt jump in 

pressure occurs, followed by a constant value all the way down-

stream, corresponding to the downstream boundary conditions. The 

bulge seen immediately before the plateau is aresult.of slight
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pressure drop just downstream of shock impingement and occured in al-

most every case in the present work. This pressure drop is perhaps 

due to the local numerical instability introduced by 5*" at J + 1, 

dP	
C 

that smoothes out the jump in , and may be the reason behind 

the shape of the first reattached profile (see Fig. 6). 

Figure 14 shoes a typical skin friction profile over the flat 

plate, as produced by the present program. The initial flat plate-

type of behavior gives way, starting at x, to a rather sharp decrease 

in C  leading to separation, followed subsequently by reattachment, 

and further downstream the profile again attains a flat plate-like 

shape. The wiggles in the separated region are due to local numerical 

instabilities (associated perhaps with the treatment of backf low 

regions) that plagued all cases which did not incorporate suction. 

(However, see Fig. 17.) This shape for the C f profile in the separated 

region has been obtained also by Reyhner and Flugge-Lotz ([7], Fig. 

15), including, particularly, the relatively large negative peak 

immediately prior to reattachment. The large positive bulge after re-

attachment is a direct consequence ofthe shape of the first reattached 

profile near the wall. As may be seen in Fig. 6, this profile has a 

large slope at the wall, causing the observed overshoot In C f This 

bulge dies out further downstream as the profile asymptotically attains 

its flat-plate value. 

Figure 15 shows the original C  profile for the case E f = 1.31 

and a "corrected" version where the positive bulge produced by the 

local numerical disturbance (Figs. 6,13) has been removed. The dashed
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line indicates.thisregion. As may be seen by comparison with Fig, 

21, the shape of this profile agrees qualitatively with experimental 

data.

Figure 16 shows two skin friction profiles, one corresponding 

to a case approaching incipient separation, the other to that of a 

slightly separated region. It is observed that In the former case 

x 
o	 sh 

is much closer to x than in the latter case, indicating a 

weaker interaction. The bulge that occured in the lower figure at 

the reattachment region (substituted by a dashed line) did not 

occur in the weaker case, indicating that the local numerical dis-

turbance which apparently produces the bulges (Figs. 6,13,14), is 

associated only with those cases that involve a strong enough 

interaction to induce separation. 

Figure 17 shows the behavior of C  over the plate with con-

stant suction velocity of approximately 5% of the normal velocity 

at the boundary layer edge. This suction is applied at the indicated 

region, starting at x and ending slightly downstream of the shock 

impingement point. It is observed that all the numerical instabil-

ities at the separated region have disappeared, resulting in a smooth 

profile. The separated region itself is smaller than for a similar 

case without suction (Fig. 14). The usual positive bulge at the 

reattachment region has also disappeared 

Figure 18 shows plots of pressure and skin friction over 

the plate for the case P, = 1.31. It is observed that the region
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of sharply decreasing C  coincides with the region of pressure 

rise downstream of x. The upper part of this rise together with 

the slight pressure plateau and the first part of the sharp rise 

in pressure occur over the separated region (C f < 0) and further 

downstream both curves approach a constant downstream velue. 

Figure 19 is a plot of a typical streamwise distribution of 

boundary layer thickness over the plate, starting atx. There is a 

sharp increase in thickness until a peak is reached at the shock 

impingement point, followed by a sharp decrease that forms the 

well known "neck", with a subsequent gradual increase, forming a flat-

plate-like shape further downstream. (See also Fig. 12.) Note that 

at the shock impingement point the boundary layer is 50/ thicker 

than at x. Note also that the curve is concave upward through 

x	 1.19 Xh which explains why *" > 0 in the strong interaction 

region.

0 



VII. COMPARISON WITH EXPERIMENTS 

The experimental work of Hakkinen, Greber, Trilling and 

Abarbanel [4] has been used here for the purpose of comparison with 

the present numerical work. The experiments were conducted with an 

insulated wall, whereas the theory is for . a cooled wall. 

Figure 20 shows the result of a pressure profile comparison. 

It is observed that the pressure rise stalting at x is slightly 

sharper than the one predicted by the present analysis. Further-

more, the pressure plateau is better defined than the present work 

predicts. Also, the second rise in pressure downstream of the 

shock impingement point, while exhibiting the same behavior, is 

predicted somewhat upstream of the place indicated by experiment. 

Lastly, while the program predicts a rather abrupt rise to the 

downstream pressure, the experiment indicates a more gradual behavior. 

All in all, the comparison shows a reasonably good fit between 

theory and experiment despite the mismatch in wall temperature. 

Figure 21 compares skin friction profiles. It is seen that 

the decrease in C  towards separation is more gradual than predicted 

by the program, and, while the point of separation is almost the 

same, the present work predicts a smaller separated region than 

indicated by experiment. Both these predictions, i.e., higher Cf 

with more rapid drop-off prior to separation and reduced separated 

region in comparison with experimental data, have been found also by 

46
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Dwoyer E91. Downstream of reattachment the large discrepancy 

between the present work and experiment is due to the large positive 

bulge that is caused by the local nunerial disturbance at the first 

reattached streainwise station. . In summary, the present work compares 

quite favorably with experiment through separation.



VIII. CONCLUSIONS 

The present work indicates that using the compressible boundary-

layer equations coupled with an exterior Prandtl-Meyer flow does 

lead to an approximate solution to the problem of oblique shock 

wave-laminar boundary layer interaction. 

The agrement with experiments, although not completely satis-

factory, is nevertheless remarkable in light of the theoretical and 

numerical difficulties involved in the use of parabolic equations 

for the solution of an elliptic problem. 

It is noted that the application of a relatively small amount 

of suction in the shock impingement region significantly reduces the 

size of the backflow region. Introducing suction into the cal-

culation also proved to be especially helpful in reducing the 

severity of the numerical instabilities. 

The use of a linear finite difference approach in the present 

work,while significantly simplifying the formulation of the equations 

and reducing computing time, might have nevertheless been part of 

the reason behind the local numerical instabilities that occured in 

critical locations in the strong interaction region. Employing a 

non-linear Crank-Nicholson method for the finite differences might 

have reduced or even eliminated these instabilities, and might have 

also permitted a reduction in the number of mesh pbints used in the 

streamwise direction.

48
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The numerical differentiation procedure for $*", when performed 

at the first station downstream of shock impingement, is most probably 

responsible for the local numerical instabilities that occured at 

the region downstream of shock impingement. A practical way to 

eliminate this problemwould be to skip the iteration procedure on 

the (J 
x	 x 

+ 1) station (in addition to J	 itself) and resume it at 
sh	 sh 

the (J	 + 2) station. 
x
sh 

In summary, the present work does produce a gross picture for 

the behavior of the flow as a result of an oblique shock-laminar 

boundary layer interaction on a flat plate, especially for the 

pressure and skin friction distributions. However, the present work 

comes short of providing a reliable, detailed picture of the flow in 

the strong interaction region.
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APPENDIX A• 

BASIC DEFINITIONS FOR QUANTITIES 'USED IN THE PROGRAM 

1. Displacement thickness:  

of	 cly
(Al) 

where u is the x-velocity component obtained from an inviscid 

solution of the flow field and evaluated at the wall. Likewise for 

P co

In the program a Simpson's Rule is used for the integration 

and the upper limit is determined by the simultaneous satisfaction 

of the - following two requirements: 

1ij 

1Ti 
11>' 

where e is a prescribed 'tolerance. This determines the edge of the 

boundary layer for each x-wise station. 

2. Skin friction coefficient and the criterion for reversed flow: 

C- 
r ______

(A2) 
U"
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Hence the condition C f	 0, indicating backflow, is determined as 

J 
follows: 

YIYcO - 

so that C 	 < 0 is equivalent to 

3 

2.A. 
Rer..Uy <0 

or 

yiJ,<o



APPENDIX B 

NEWTON-RAPHSON PROCEDURE FOR THE PRANDTL-NEYER EQUATION 

I
The general Newton-Raphsori equation is: 

Xill--X 
	

(Bl) 

In our case,

-	 (B2) 

and 

f'(()
( 

+___	 (B3)
C1 x 

where 

Ir+i 

Now

Lf	 dy ctY=  
L[8—[L dyJ	 (B4) 

J5 * L()	 _L(& 
dM.1	 H.V%.	 M..j f0lJ.. 

-	
,%1.s_	 11..
	 (B5) 
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and hence 

f%* .M 14)c
(B6) 

Order of magnitude analysis for the terms in Eqn. (B3): 

X/JX-I -077 )/OIL 

For a flat plate 

Ae 

dXfRp 

O..8C 

• -	 ad?l.4' 
•• xt)( 

Also 

and 

moo 

cIX
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Hence	 • 

# tcr*	 I	 '\ 
df'1 

Away from the immediate vicinity of x = 0 this term is negligible 

in comparison with the other two terms in eqn. (B3). Hence 

is negligible, noting that 

Q' Q' _1	 I	 1cLcr 
[1+ 

and the term in the brackets is typically of 0(1) for a flat plate. 

So the Newton-Raphson procedure becomes

(B7) 
6 ___ I
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APPENDIX C 

C.l Numerical integrations of 6*" 
g 

Since the iterations on each j station begin only at a point 

which is one step downstream of the beginning of the strong inter-

action,	 at that stage Is usually larger than 4, typically 50 

(allowing the development of a weak interaction over 49 stations 

before triggering the strong interactior. Hence the integration of 

5*" employs an inversion of the
	

basic formula for the 

second derivative, using a back
	

scheme, namely 

_

	

	
(Cl-1) 

a(x) 

Based on this we have 

.W / = j 	,Ti j -s J .-af	 (ci-2) 

i* 
a	 tj+*T 

These formulae, when applied for the first two times, use the in-

compressible weak interaction values for 6* and 6*', namely 

y*_. j7208J)oX , 
r'=

 

0.804 
VWE 

where 

RO

57



58 

C.2 Second derivative of 6* 
C 

Special care must be exercised when numerically differentiating 

a variable, since differentiation tends to introduce instabilities. 

It was found that the best formula for 6*" is a simple backward 
C. 

J 
scheme, namely

'' CA	 Cj..L	 (C2-1) cj	
(41)2. 

C.3 Newton-Raphson Procedure for Improving (6*11)• 
9  

The basis for the convergence of a calculation at each x-wise 

station is the agreement between the guessed and calculated 6*" for 

that station to within a specified tolerance. Hence the Newton-

Raphson procedure is 

1L' =k1,
1r"1 

yt"1 
E 

u][...*'/] -	 I	 L G j.
1	 ,L2 

I	 JL....Lc j iL-i 

1 
r1rr'/' 

_J¼ 	 ( C3-1) 
L 

where j stands for any x-wise station and c ueans a computed value.
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C.4 Newton-Raphson procedure for improving (6*"). 

g ix 
sh 

The basis for obtaining a successively better guess for 6" 

ix 

	

is picking that branch which will result in the correct down- 	
sh 

stream pressure with negligible pressure gradient. Hence the Newton-

Raphson procedure is 

(y,,;:)

r * / .Jp{(g * )] 
- F) = O;	 P[O) -?[(::A

(C4-l) 

where P  is the inviscid downstream pressure (see Appendix D) and 

is the pressure at the downstream station, as calculated 

using the jth guess for 5*" . The starting values used in the pro-
Xh 

gram are: 

(:). = k, [xrCh]
	

with K, = -0.1 

with K = 1.5



APPENDIX D 

FIRST GUESSES FOR 6"	 and x 
3	 0 
x
sh 

Since the downstream boundary condition demonstrates a nodal-

type of behavior, extremely small changes in (5*") 

produce large changes in the branching solution:. Hence 

the first guess for 	 "	 is important in order to start a branching 

sh	 - - 
solution. A good initial guess enables the employment of small 

corrections to it as an effective controt parameter. For incom-

pressible flow over a flat plate, 

f_I.72O4-7/_.	 -	 ( Dl) 
from which

(D2) 

and 

*11
-0. 430 a - F(t 0 E; ;ZA - 

In nondimensional form this becomes 

a
(D4) 

(D3) 
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giving as the first guess

I	 3 3/zI>,'__\ 
I r tl	

0.4302(R) 
L	 JXk	

(D5) 

The first guess for x 
0 

is based on Rose's empirical formula 

(Ref. 16):

o.73 1X. ?I 

.x!_ t _c8S (Pf -I) (
 Xsh	 I	 14	 o.tr 

t1	 re0
(D6) 

This equaticn is iterated upon until a converged value for -2-
sh 

is obtained. Here Xh is the point where the idealized shock 

impinges on the boundary layer, and P final is determined from 
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inviscid considerations:



APPENDIX E


PROCEDURE FOR THE x ITERATION 
0 

The following method is employed for the successive improve-

ment of x
0 

(X 1) i 44 (X*)i (ic,).	
(El) 

or

	

(x0)	
(E2) 

where K1 .< 1 to produce a smaller x and thereby a more compressive 

branch, and K2 > 1 to produce a larger x and thus a less com-

pressive branch. Once a correction has been done on x, the K's 

are updated as follows: 

(i-..,=k[1^(K,)]	 (!c1).0.&c	 (E3) 

	

2[I+	 I	 (c), =L/o.c (E4) 

One of these new K's is used in the next x-iteration to produce a 
0 

corrected either more expansive or more compressive branch, as 

necessary, until the right branch is found. This iteration is per-

formed in conjunction with the (*")	 iteration, explained in 

Appendix C4.	
xh 
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Fig. 1 Oblique shock-laminar boundary layer interaction on a 
flat plate, showing separated region.
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Fig. 2 Influence of branch control parameter, Pardel, on branching 
behavior.
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Fig. 4 Flowchart for computer program
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Fig. 13 Typical static pressure profile. 
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Fig. 15 original and "corrected" skin friction for Pf	 1.31. 
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Fig. 16 Comparison between skin friction plots. Upper plot depicts 
case approaching incipient separation. Lower plot depicts 
case with small separated region. (Pt • 2.0, Re h • 3.89x10 
Pr - 0.70,	 - 1.0, dashed line not produced by program.)
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Fig. 20 Comparison between experiment and theory. Experimental 
points are from Hakkinen, Greber, Trilling and Abarbanel 
(4). (M = 2.0, ReSh	 4.02x10 5 , Pr	 0.72, P fP0	 1.47, 

Sutherland Law, T	 = 295°K, s	 110°K). st

82



Pl.48 IIIIIIIIIIILIiIi ]__ 
-iii IE- H 

T	 1.0  
V	 r 

=3.89xl0 

IPr

sh

0.10  

_.jRe
I

U, 

VI 

VI

LM

83 

X/X h	 1.0 

Axial distance, XIXh 

Fig. 21 Comparison between experiment and 
points are from Hakkinen, Greber, 
[4].	 (Mo
	 sh 

2.0, Re	 4.02 x 10 

Sutherland Law, T * 	 295°K, s t =
st

theory. Experimental 
Trilling and Abarbanel 

Pr	 0.72, P f /P0 = 1.47, 

ll0°K).



1. Report No. 2. Government Accession No. 3. Recipients Catalog No. 

NASA_CR-159829 
4.	 Title and Subtitle 5. Report Date 

CALCULATION OF OBLIQUE-SHOCK-WAVE LAMINAR- March 1980 
6. Performing Organization Code BOUNDARY-LAYER INTERACTION ON A FLAT PLATE 

7. Author(s) 8. Performing Organization Report No. 

Uriel Goldberg, General Electric Co., Lynn, Mass., 	 . None 
Eli Reshotko, Case Western Reserve University, Cleveland, Ohio 10. Work Unit No. 

9. Performing Organization Name and Address 

Case Western Reserve University 
Cleveland, Ohio 44106

11. Contract or Grant No. 

NGR-36-027-064 
13. Type of Report and Period Covered 

Contractor Report 12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration
14. Sponsoring Agency Code 

Washington, D.C.	 20546 

15. Supplementary Notes 

Final report.	 Project Manager, Allan R. Bishop, Propulsion Systems Division, NASA Lewis 
Research Center, Cleveland, Ohio 44135. 

16. Abstract 

A finite-difference solution to the problem of the interaction between an impinging oblique shock 
wave and the laminar boundary layer on a flat plate is presented.	 The boundary layer equations 
coupled with the Prandtl-Meyer relation for the external flow are used to calculate the flow field. 
An improved method for the calculation of the separated flow region is presented and discussed. 
Comparasions between this theory and the experimental results of Haickinen, Greber, Trilling 
and Abarbanel show fairly good agreement.	 Results are presented for the case of a cooled wall 
with an oncoming flow at Mach number 2. 0 without and with suction. 	 The results show that a 
small amount of suction greatly reduces the extent of the separated region in the vicinity of the 
shock impingement location. 

17. Key Words (Suggested by Author(s)) 18. Distribution Statement 

Boundary-layer Unclassified - unlimited 
Separation STAR Category 34 
Shock wave 
Strong interaction 

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22.	 Price 

Unclassified Unclassified 87

For sale by the National Technical Information Service, Springfield, Virginia 22161 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88



