355 research outputs found

    Polar-bulge galaxies

    Full text link
    Based on SDSS data, we have selected a sample of nine edge-on spiral galaxies with bulges whose major axes show a high inclination to the disk plane. Such objects are called polar-bulge galaxies. They are similar in their morphology to polar-ring galaxies, but the central objects in them have small size and low luminosity. We have performed a photometric analysis of the galaxies in the g and r bands and determined the main characteristics of their bulges and disks. We show that the disks of such galaxies are typical for the disks of spiral galaxies of late morphological types. The integrated characteristics of their bulges are similar to the parameters of normal bulges. The stellar disks of polar-bulge galaxies often show large-scale warps, which can be explained by their interaction with neighboring galaxies or external accretion from outside.Comment: 8 pages, 3 figure

    First Interferometric Observations of Molecular Gas in a Polar Ring: The Helix Galaxy NGC 2685

    Get PDF
    We have detected four Giant Molecular cloud Associations (GMAs) (sizes < 6.6'' ~ 430 pc) in the western and eastern region of the polar ring in NGC2685 (the Helix galaxy) using the Owens Valley Radio Observatory (OVRO) millimeter interferometer. Emission from molecular gas is found close to the brightest Halpha and HI peaks in the polar ring and is confirmed by new IRAM 30m single dish observations. The CO and HI line velocities are very similar, providing additional kinematic confirmation that the CO emission emerges from the polar ring. For the first time, the total molecular mass within a polar ring is determined (M_H2~(8-11)x10^6 M_sol, using the standard Galactic conversion factor). We detect about M_H2~4.4x10^6 M_sol in the nuclear region with the single dish. Our upper limit derived from the interferometric data is lower (M_H2<0.7x10^6 M_sol) suggesting that the molecular gas is distributed in an extended (< 1.3 kpc) diffuse disk. These new values are an order of magnitude lower than in previous reports. The total amount of molecular gas and the atomic gas content of the polar ring are consistent with formation due to accretion of a small gas-rich object, such as a dwarf irregular. The properties of the NGC2685 system suggest that the polar ring and the host galaxy have been in a stable configuration for a considerable time (few Gyr). The second (outer) HI ring within the disk of NGC2685 is very likely at the outer Lindblad resonance (OLR) of the ~ 11 kpc long stellar bar.Comment: 8 pages, 4 figures, accepted by ApJ Letter

    Does the stellar disc flattening depend on the galaxy type?

    Get PDF
    We analyze the dependence of the stellar disc flatness on the galaxy morphological type using 2D decomposition of galaxies from the reliable subsample of the Edge-on Galaxies in SDSS (EGIS) catalogue. Combining these data with the retrieved models of the edge-on galaxies from the Two Micron All Sky Survey (2MASS) and the Spitzer Survey of Stellar Structure in Galaxies (S4^4G) catalogue, we make the following conclusions: (1) The disc relative thickness z0/hz_0/h in the near- and mid-infrared passbands correlates weakly with morphological type and does not correlate with the bulge-to-total luminosity ratio B/TB/T in all studied bands. (2) Applying an 1D photometric profile analysis overestimates the disc thickness in galaxies with large bulges making an illusion of the relationship between the disc flattening and the ratio B/TB/T. (3) In our sample the early-type disc galaxies (S0/a) have both flat and "puffed" discs. The early spirals and intermediate-type galaxies have a large scatter of the disc flatness, which can be caused by the presence of a bar: barred galaxies have thicker stellar discs, on average. On the other hand, the late-type spirals are mostly thin galaxies, whereas irregular galaxies have puffed stellar discs.Comment: 17 pages, 17 figures, accepted for publication in MNRA

    The origin of polar ring galaxies: evidence for galaxy formation by cold accretion

    Full text link
    Polar ring galaxies are flattened stellar systems with an extended ring of gas and stars rotating in a plane almost perpendicular to the central galaxy. We show that their formation can occur naturally in a hierarchical universe where most low mass galaxies are assembled through the accretion of cold gas infalling along megaparsec scale filamentary structures. Within a large cosmological hydrodynamical simulation we find a system that closely resembles the classic polar ring galaxy NGC 4650A. How galaxies acquire their gas is a major uncertainty in models of galaxy formation and recent theoretical work has argued that cold accretion plays a major role. This idea is supported by our numerical simulations and the fact that polar ring galaxies are typically low mass systems.Comment: 4 pages, 5 figures, stability of the ring discussed, minor changes to match the accepted version by ApJL. A preprint with high-resolution figures is available at http://krone.physik.unizh.ch/~andrea/PolarRing/PolarRing.p

    The Catalog of Edge-on Disk Galaxies from SDSS. Part I: the catalog and the Structural Parameters of Stellar Disks

    Get PDF
    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release (DR7) of the Sloan Digital Sky Survey. A visual inspection of the gg, rr and ii images of about 15000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-ons, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects show signs of interaction, warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, and Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified 3-D modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper we present the sample selection procedure and general description of the sample.Comment: Accepted for publication in Ap
    • …
    corecore