35 research outputs found

    Cell signaling and transcription factor genes expressed during whole body regeneration in a colonial chordate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The restoration of adults from fragments of blood vessels in botryllid ascidians (termed whole body regeneration [WBR]) represents an inimitable event in the chordates, which is poorly understood on the mechanistic level.</p> <p>Results</p> <p>To elucidate mechanisms underlying this phenomenon, a subtracted EST library for early WBR stages was previously assembled, revealing 76 putative genes belonging to major signaling pathways, including <it>Notch/Delta</it>, <it>JAK/STAT</it>, protein kinases, nuclear receptors, Ras oncogene family members, G-Protein coupled receptor (GPCR) and transforming growth factor beta (TGF-β) signaling. RT-PCR on selected transcripts documented specific up-regulation in only regenerating fragments, pointing to a broad activation of these signaling pathways at onset of WBR. The followed-up expression pattern of seven representative transcripts from <it>JAK/STAT </it>signaling (<it>Bl-STAT</it>), the Ras oncogene family (<it>Bl-Rap1A, Bl-Rab-33</it>), the protein kinase family (<it>Bl-Mnk</it>), <it>Bl-Cnot</it>, <it>Bl-Slit </it>and <it>Bl-Bax inhibitor</it>, revealed systemic and site specific activations during WBR in a sub-population of circulatory cells.</p> <p>Conclusion</p> <p>WBR in the non-vertebrate chordate <it>Botrylloides leachi </it>is a multifaceted phenomenon, presided by a complex array of cell signaling and transcription factors. Above results, provide a first insight into the whole genome molecular machinery of this unique regeneration process, and reveal the broad participation of cell signaling and transcription factors in the process. While regeneration involves the participation of specific cell populations, WBR signals are systemically expressed at the organism level.</p

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi.

    Get PDF
    Regeneration in adult chordates is confined to a few model cases and terminates in restoration of restricted tissues and organs. Here, we study the unique phenomenon of whole body regeneration (WBR) in the colonial urochordate Botrylloides leachi in which an entire adult zooid is restored from a miniscule blood vessel fragment. In contrast to all other documented cases, regeneration is induced systemically in blood vessels. Multiple buds appear simultaneously in newly established regeneration niches within vasculature fragments, stemming from composites of pluripotent blood cells and terminating in one functional zooid. We found that retinoic acid (RA) regulates diverse developmental aspects in WBR. The homologue of the RA receptor and a retinaldehyde dehydrogenase-related gene were expressed specifically in blood cells within regeneration niches and throughout bud development. The addition of RA inhibitors as well as RNA interference knockdown experiments resulted in WBR arrest and bud malformations. The administration of all-trans RA to blood vessel fragments resulted in doubly accelerated regeneration and multibud formation, leading to restored colonies with multiple zooids. The Botrylloides system differs from known regeneration model systems by several fundamental criteria, including epimorphosis without the formation of blastema and the induction of a "multifocal regeneration niche" system. This is also to our knowledge the first documented case of WBR from circulating blood cells that restores not only the soma, but also the germ line. This unique Botrylloides WBR process could serve as a new in vivo model system for regeneration, suggesting that RA signaling may have had ancestral roles in body restoration events

    Urochordate whole body regeneration inaugurates a diverse innate immune signaling profile

    Get PDF
    AbstractThe phenomenon of whole body regeneration (WBR) from minute soma fragments is a rare event in chordates, confined to the subfamily of botryllid ascidians and is poorly understood on the cellular and molecular levels. We assembled a list of 1326 ESTs from subtracted mRNA, at early stages of Botrylloides leachi WBR, and classified them into functional categories. Sixty-seven (15%) ESTs with roles in innate immunity signaling were classified into a broad functional group, a result supported by domain search and RT–PCR reactions. Gene ontology analysis for human homologous to the immune gene category, identified 22 significant entries, of which “peptidase activity” and “protease inhibitor activity”, stood out as functioning during WBR. Analyzing expressions of serine protease Bl-TrSP, a representative candidate gene from the “peptidase activity” subgroup, revealed low transcript levels in naïve vasculature with upregulated expression during WBR. This was confirmed by in situ hybridization that further elucidated staining restricted to a circulating population of macrophage cells. Furthermore, Bl-TrSP was localized in regeneration niches within vasculature, in regenerating buds, and in buds, during blastogenesis. Functional inhibition of serine protease activity disrupts early remodeling processes of the vasculature microenvironment and hinders WBR. Comparison of genome-wide transcription of WBR with five other developmental processes in ascidians (including metamorphosis, budding and blastogenesis), revealed a broad conservation of immune signaling expressions, suggesting a ubiquitous route of harnessing immune-related genes within a broader range of tunicate developmental context. This, in turn, may have enabled the high diversity of life history traits represented by urochordate ascidians

    Evolutionary Transition in the Regulation of Vertebrate Pronephros Development: A New Role for Retinoic Acid

    No full text
    The anterior-posterior (AP) axis in chordates is regulated by a conserved set of genes and signaling pathways, including Hox genes and retinoic acid (RA), which play well-characterized roles in the organization of the chordate body plan. The intermediate mesoderm (IM), which gives rise to all vertebrate kidneys, is an example of a tissue that differentiates sequentially along this axis. Yet, the conservation of the spatiotemporal regulation of the IM across vertebrates remains poorly understood. In this study, we used a comparative developmental approach focusing on non-conventional model organisms, a chondrichthyan (catshark), a cyclostome (lamprey), and a cephalochordate (amphioxus), to assess the involvement of RA in the regulation of chordate and vertebrate pronephros formation. We report that the anterior expression boundary of early pronephric markers (Pax2 and Lim1), positioned at the level of somite 6 in amniotes, is conserved in the catshark and the lamprey. Furthermore, RA, driving the expression of Hox4 genes like in amniotes, regulates the anterior pronephros boundary in the catshark. We find no evidence for the involvement of this regulatory hierarchy in the AP positioning of the lamprey pronephros and the amphioxus pronephros homolog, Hatschek&rsquo;s nephridium. This suggests that despite the conservation of Pax2 and Lim1 expressions in chordate pronephros homologs, the responsiveness of the IM, and hence of pronephric genes, to RA- and Hox-dependent regulation is a gnathostome novelty

    Evolutionary Transition in the Regulation of Vertebrate Pronephros Development: A New Role for Retinoic Acid

    No full text
    The anterior-posterior (AP) axis in chordates is regulated by a conserved set of genes and signaling pathways, including Hox genes and retinoic acid (RA), which play well-characterized roles in the organization of the chordate body plan. The intermediate mesoderm (IM), which gives rise to all vertebrate kidneys, is an example of a tissue that differentiates sequentially along this axis. Yet, the conservation of the spatiotemporal regulation of the IM across vertebrates remains poorly understood. In this study, we used a comparative developmental approach focusing on non-conventional model organisms, a chondrichthyan (catshark), a cyclostome (lamprey), and a cephalochordate (amphioxus), to assess the involvement of RA in the regulation of chordate and vertebrate pronephros formation. We report that the anterior expression boundary of early pronephric markers (Pax2 and Lim1), positioned at the level of somite 6 in amniotes, is conserved in the catshark and the lamprey. Furthermore, RA, driving the expression of Hox4 genes like in amniotes, regulates the anterior pronephros boundary in the catshark. We find no evidence for the involvement of this regulatory hierarchy in the AP positioning of the lamprey pronephros and the amphioxus pronephros homolog, Hatschek’s nephridium. This suggests that despite the conservation of Pax2 and Lim1 expressions in chordate pronephros homologs, the responsiveness of the IM, and hence of pronephric genes, to RA- and Hox-dependent regulation is a gnathostome novelty

    Disruption of RAR Function during Regeneration Causes Bud Malformations

    No full text
    <p>In order to verify the efficiency and ability of RAR siRNAs to interact and decrease RAR RNA levels, we added RAR siRNAs and control siRNAs to B. leachi colonies and compared RAR RNA levels to untreated colonies. Control siRNAs and untreated colonies exhibit approximately the same transcripts levels (A) (lanes 1 and 3), while RAR siRNAs show a significant reduction in RAR RNA levels (A) (lane 2). Actin transcript levels remain unchanged, indicating the viability of the tissue. After 6 d, control experiments using the control siRNAs completed vasculature movements, forming opaque vessel masses as specified before (B) (compare to <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0050071#pbio-0050071-g001" target="_blank">Figure 1</a>F). In contrast, in RNAi-affected experiments, blood vessels remained apart, situated haphazardly within the tunic matrix (C) (compare to <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0050071#pbio-0050071-g005" target="_blank">Figure 5</a>A). In several experiments, vessel movement halted in an intermediate state (D). A similar phenotypic morphology was observed with the RAR pan-antagonist BMS-493 (E). Histological sections reveal malformation of regenerating buds in RNAi treatments (F, arrow, compared to <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0050071#pbio-0050071-g005" target="_blank">Figure 5</a>E and <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0050071#pbio-0050071-g005" target="_blank">5</a>F). In mild cases, buds reached progressive developmental stages but failed to invaginate properly (G, arrow). A similar histological phenotype is observed in BMS-493-treated fragments exhibiting malformed epithelial spheres (H, arrows). Scale bar in (B–E) represents 1 mm; scale bar in (F–H) represents 100 μm.</p
    corecore