30 research outputs found

    Aquatic beetles influence colonization of disparate taxa in small lentic systems

    Get PDF
    © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd Structure of natural communities is shaped by both abiotic characteristics and the ongoing processes of community assembly. Important to this process are the habitat selection behaviors and subsequent survival of colonists, both in the context of temporal changes in the abiotic characteristics and priority effects driven by earlier colonists. Aquatic beetles are prevalent in temporary freshwater systems, form speciose assemblages, and are often early colonists of temporary ponds. While beetles have the potential to influence community structure through post-colonization interactions (predation and competition), our goal was to determine whether the presence of beetle assemblages (versus patches without beetles) influences the colonization and oviposition of a diverse group of animals in a naturally colonized experimental landscape. We established mesocosms that either contained existing beetle assemblages or contained no beetles and assessed abundances of subsequent colonists. Treefrogs, Hyla chrysoscelis, and mosquitoes, Culex restuans, both deposited fewer eggs in patches containing beetle assemblages, while two beetles, Copelatus glyphicus and Paracymus, colonized those patches at lower rates. One beetle, Helophorus linearis, colonized patches containing beetle assemblages at higher rates, while two beetles, Berosus infuscatus and Tropisternus lateralis, exhibited no colonization differences between treatments. Overall, there were no differences in the assemblage structure or richness of beetles that colonized patches. Our results illustrate the importance of species-specific habitat selection behavior in determining the species composition of habitat patches, while emphasizing the role of priority effects in influencing patterns of community assembly. Habitat selection in response to abiotic and biotic characteristics of habitat patches can potentially create greater spatiotemporal niche separation among the numerous, often closely related species (phylogenetically and trophically), that can be simultaneously found in similar patches across landscapes

    Spatial and Temporal Dynamics of Habitat Selection Across Canopy Gradients Generates Patterns of Species Richness and Composition in Aquatic Beetles

    Get PDF
    1. Colonisation is a critical ecological process influencing both population and community level dynamics by connecting spatially discrete habitat patches. How communities respond to both natural and anthropogenic disturbances, furthermore, requires a basic understanding of how any environmental change modifies colonisation rates. For example, disturbance-induced shifts in the quantity of forest cover surrounding aquatic habitats have been associated with the distribution and abundance of numerous aquatic taxa. However, the mechanisms generating these broad and repeatable field patterns are unclear. 2. Such patterns of diversity could result from differential spatial mortality post colonisation, or from colonisation alone if species select sites non-randomly along canopy coverage gradients. We examined the colonisation/oviposition dynamics of aquatic beetles in experimental ponds placed under both open and closed forest canopies. 3. Canopy coverage imposed a substantial behavioural filter on the colonisation and reproduction of aquatic beetles representing multiple trophic levels, and resulted in significantly higher abundance, richness, and oviposition activity in open canopy ponds. These patterns strengthened overtime; although early in the experiment, the most abundant beetle had similar abundance in open and closed ponds. However, its abundance subsequently declined and then most other species heavily colonised open canopy ponds. 4. The primary response of many aquatic species to disturbances that generate canopy coverage gradients surrounding aquatic ecosystems is behavioural. The magnitude of the colonisation responses reported here rivals, if not exceeds, those produced by predators, suggesting that aquatic landscapes are behaviourally assessed and partitioned across multiple environmental gradients. The community level structure produced solely by selective colonisation, is predicted to strongly modify how patch area and isolation affect colonisation rates and the degree to which communities are linked by the flux of individuals and species

    Metabolic Rate Models and the Substitutability of Predator Populations

    Get PDF
    1. Much of the debate surrounding the consequences of biodiversity loss centres around the issue of whether different species are functionally similar in their effects on ecological processes. In this study, we examined whether populations consisting of smaller, more abundant individuals are functionally similar to populations of the same species with larger, fewer individuals. 2. We manipulated the biomass and density of banded sunfish (Enneacanthus obesus) and measured their impact on populations of Southern leopard frog (Rana sphenocephala) larvae. We also evaluated the ability of models relating metabolic rate to body size to predict the relative impacts of populations that differ in average body size and population density. 3. Our results indicate that population biomass, density and their interaction each play a large role in determining the effect of a predator population on its food resource. Populations with smaller but more abundant individuals had effects as large or larger than those populations with larger but fewer individuals. 4. Although we found qualitative agreement between the observed relative effects of populations with that predicted by allometric models, we also found that density-dependence can cause effects of a population to differ from that expected based on allometry. 5. The substitutability of populations differing in average body size appears to depend on complex relationships between metabolic rate, population density and the strength of density-dependence. The restrictive conditions necessary to establish functional equivalence among different populations of the same species suggests that functional equivalence should be rare in most communities

    Temperature but not nutrient addition affects abundance and assemblage structure of colonizing aquatic insects

    Get PDF
    Abiotic conditions are important considerations in the species sorting process, which ultimately determines the distribution and abundance of species. Freshwater ecosystems will be impacted by ongoing temperature rise and other anthropogenically induced changes, such as nutrient enrichment and eutrophication. Changing characteristics of freshwater habitats will likely impact organisms in numerous ways, including through effects on colonization dynamics. Species are expected to colonize habitat patches where fitness will be the highest for themselves and their offspring, and how habitat selection interacts with changing environments remains an important question. We conducted a warming experiment to test the habitat selection preferences of aquatic beetles and hemipterans between habitat patches (mesocosms) of varying temperatures (via heaters), nutrient addition, and their interaction. Overall, insect abundance and richness were higher in unheated patches, with taxon-specific variation in response to heating. Although nutrients had limited effects on environmental conditions in mesocosms, their addition had no significant effects on insects. Insect assemblages had unique structures across heating treatments, with lower beta diversity and higher effective numbers of species in the warmest mesocosms. Our data support the importance of spatial variation in abiotic factors during the habitat selection process, and in determining species distributions and abundances as shallow lentic ecosystems are impacted by rising global temperatures

    Patch size drives colonization by aquatic insects, with minor priority effects of a cohabitant

    Get PDF
    Patch size is one of the most important factors affecting the distribution and abundance of species, and recent research has shown that patch size is an important niche dimension affecting community structure in aquatic insects. Building on this result, we examined the impact of patch size in conjunction with presence of larval anurans on colonization by aquatic insects. Hyla chrysoscelis (Cope\u27s gray treefrog) larvae are abundant and early colonists in fishless lentic habitats, and these larvae can fill multiple ecological roles. By establishing larvae in mesocosms prior to colonization, we were able to assess whether H. chrysoscelis larvae have priority effects on aquatic insect assemblages. We conducted a series of three experiments in naturally colonized experimental landscapes to test whether (1) H. chrysoscelis larval density affects insect colonization, (2) variation in patch size affects insect colonization, and (3) the presence and larval density of H. chrysoscelis shift colonization of insects between patches of different size. Larval density independently had almost no effect on colonization, while patch size had species-specific effects consistent with prior work. When larvae and patch size were tested in conjunction, patch size had numerous, often strong, species-specific effects on colonization; larval density had effects largely limited to the assemblages of colonizing beetles and water bugs, with few effects on individual species. Higher larval densities in large mesocosms shifted some insect colonization to smaller patches, resulting in higher beta diversity among small patches in proximity to high density large mesocosms. This indicates establishing H. chrysoscelis larvae prior to insect colonization can likely create priority effects that slightly shape insect communities. Our results support the importance of patch size in studying species abundances and distributions and also indicate that colonization order plays an important role in determining the communities found within habitat patches

    Patch size as a niche dimension: Aquatic insects behaviorally partition enemy-free space across gradients of patch size

    Get PDF
    © 2019 by University of Chicago. Positive correlation of species richness with area is ubiquitous in nature, but the processes driving that relationship, as well as those constraining typical patterns, remain elusive. Patch size variation is pervasive in natural systems, and it is thus critical to understand how variation in patch size, as well as its potential interaction with factors like predation and isolation, affects community assembly. We crossed patch quality (fish presence/absence) with patch size to the examine effects of quality, size, and their interaction on colonization by aquatic insects. Overall, beetles favored small, fishless patches, but individual species sorted across patch size while hemipterans aggregated into large, fishless patches, producing sorting between Coleoptera and Hemiptera. Both patch size and predation risk generated significant variation in community structure and diversity. Patch size preferences for the 14 most abundant species and preeminence of species turnover in patterns of β-diversity reinforce patch size as a driver of regional species sorting via habitat selection. Species sorting at the immigration stage plays a critical role in community assembly. Identifying patch size as a component of perceived quality establishes patch size as a critical niche dimension and alters our view of its role in assembly dynamics and the maintenance of local and regional diversity

    Scale‐dependent effects of host patch traits on species composition in a stickleback parasite metacommunity

    Get PDF
    A core goal of ecology is to understand the abiotic and biotic variables that regulate species distributions and community composition. A major obstacle is that the rules governing species distributions can change with spatial scale. Here, we illustrate this point using data from a spatially nested metacommunity of parasites infecting a metapopulation of threespine stickleback fish from 34 lakes on Vancouver Island, British Columbia. Like most parasite metacommunities, the composition of stickleback parasites differs among host individuals within each host population, and differs between host populations. The distribution of each parasite taxon depends, to varying degrees, on individual host traits (e.g., mass, diet) and on host‐population characteristics (e.g., lake size, mean host mass, mean diet). However, in most cases in this data set, a given parasite was regulated by different factors at the host‐individual and host‐population scales, leading to scale‐dependent patterns of parasite‐species co‐occurrence

    Does maternal exposure to an environmental stressor affect offspring response to predators?

    Get PDF
    There is growing recognition of the ways in which maternal effects can influence offspring size, physiological performance, and survival. Additionally, environmental contaminants increasingly act as stressors in maternal environments, possibly leading to maternal effects on subsequent offspring. Thus, it is important to determine whether contaminants and other stressors can contribute to maternal effects, particularly under varied ecological conditions that encompass the range under which offspring develop. We used aquatic mesocosms to determine whether maternal effects of mercury (Hg) exposure shape offspring phenotype in the American toad (Bufo americanus) in the presence or absence of larval predators (dragonfly naiads). We found significant maternal effects of Hg exposure and significant effects of predators on several offspring traits, but there was little evidence that maternal effects altered offspring interactions with predators. Offspring from Hg-exposed mothers were 18% smaller than those of reference mothers. Offspring reared with predators were 23% smaller at metamorphosis than those reared without predators. There was also evidence of reduced larval survival when larvae were reared with predators, but this was independent of maternal effects. Additionally, 5 times more larvae had spinal malformations when reared without predators, suggesting selective predation of malformed larvae by predators. Lastly, we found a significant negative correlation between offspring survival and algal density in mesocosms, indicating a role for top-down effects of predators on periphyton communities. Our results demonstrate that maternal exposure to an environmental stressor can induce phenotypic responses in offspring in a direction similar to that produced by direct exposure of offspring to predators

    Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae)

    No full text
    Documenting the role of past interactions in the assembly of present communities has proven problematic. Colonization is a key process in community assembly that is both potentially driven by past interactions and amenable to experimental approaches. Colonization and oviposition by an aquatic beetle (Tropisternus lateralis) was assayed in the presence and absence of both 'harmless' and tactilely/visually isolated predatory fish (Lepomis gibbosus and L. macrochirus). Beetles avoided each treatment with fish when compared to fish-free experimental pools. Activity levels after colonization also differed significantly between adults in fish and fish-free tanks. Predator effects on species composition are typically ascribed to contemporary predation events; the presence of a strong avoidance response demonstrates that past species interactions affect present distributions and may play an important role in the ongoing assembly of contemporary communities. Documentation of such avoidance behavior in a growing number of species fundamentally alters our view of the processes affecting species distributions and the process of community assembly

    Between a rock and a hard place: Ovipositing treefrogs navigate complex trade‐offs in the landscape of patch quality

    No full text
    Abstract Colonizing organisms actively choosing habitats face a bewildering array of choices regarding patch quality, whether choosing for themselves, offspring, or both. Decisions are especially critical when selecting patches for long‐term use (demographic habitat selection). Thus, identifying higher quality patches based on available cues, and integrating information across multiple axes of patch quality, is critical to survival, performance, and fitness. Two critical axes of patch quality for ovipositing gray treefrogs, revealed by prior experiments, are predation risk and patch size. We utilized a unique design presenting two, suboptimal patch choices: small fishless pools and large pools with fish. Our goal was to gain an understanding of the relative priority of these two important patch characteristics for treefrogs by presenting only compromise choices and comparing these results to expectations generated by a previous experiment. In the absence of optimal patches, treefrogs increased their use of both large pools with fish and especially small fishless patches, both of which are unused when larger fishless patches are available. These results reaffirm the primacy of predation, especially the presence of fish, vividly illustrating the spatial context dependence of habitat selection behavior, as well as the complexity of the decisions faced by colonizing and ovipositing organisms in complex landscapes
    corecore