878 research outputs found

    5KW pulse width modulated static inverter

    Get PDF
    Design verification tests for logic and low level circuits, and preliminary single-phase breadboard of pulse width modulated static inverte

    Intervertebral disc embolization resulting in spinal cord infarction

    Get PDF
    Journal ArticleA case of spinal cord infarction resulting from embolization of fibrocartilaginous intervertebral disc material is presented. Cases from the literature are reviewed and the theories of pathogenesis are discussed. In all reported cases the diagnosis was not made until postmortem examination

    J Fluorescence

    Get PDF
    The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards

    Violation of Bell's Inequality with Photons from Independent Sources

    Get PDF
    We report a violation of Bell's inequality using one photon from a parametric down-conversion source and a second photon from an attenuated laser beam. The two photons were entangled at a beam splitter using the post-selection technique of Shih and Alley [Phys. Rev. Lett. 61, 2921 (1988)]. A quantum interference pattern with a visibility of 91% was obtained using the photons from these independent sources, as compared with a visibility of 99.4% using two photons from a central parametric down-conversion source.Comment: 4 pages, 5 figures; minor change

    VLBI observations of the Crab nebula pulsar

    Get PDF
    Observations were made at meter wave-lengths using very long base-line interferometry techniques. At 196.5 MHz no resolution of the pulsar are observed; all the pulse shapes observed with the interferometers are similar to single dish profiles, and all the power pulsates. At 111.5 MHz besides the pulsing power there is always a steady component, presumably due to interstellar scattering. The pulsar is slightly resolved at 111.5 MHz with an apparent angular diameter of 0.07 sec ? 0.01 sec. A 50 percent linear polarization of the time-averaged power is noted at 196.5 MHz; at 111.5 MHz, 20 percent of the total time-averaged power is polarized, 35 percent of the pulsing power is polarized, and the steady component is unpolarized

    A conditional-phase switch at the single-photon level

    Full text link
    We present an experimental realization of a two-photon conditional-phase switch, related to the ``cc-ϕ\phi '' gate of quantum computation. This gate relies on quantum interference between photon pairs, generating entanglement between two optical modes through the process of spontaneous parametric down-conversion (SPDC). The interference effect serves to enhance the effective nonlinearity by many orders of magnitude, so it is significant at the quantum (single-photon) level. By adjusting the relative optical phase between the classical pump for SPDC and the pair of input modes, one can impress a large phase shift on one beam which depends on the presence or absence of a single photon in a control mode.Comment: 8 pages, 4 figure

    Entanglement-secured single-qubit quantum secret-sharing

    Full text link
    In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participant's preparation of the qubit state and the subsequent participants' choices of state rotation or measurement basis. We present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs produced in type-I spontaneous parametric downconversion. We investigate the protocol's security against eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and imperfect preparation of the initial qubit state. A protocol which exploits entanglement between photons, rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success against the entanglement-based protocol while showing the predicted rate of success against a correlation-based protocol.Comment: 10 pages, 8 figure
    corecore