29 research outputs found

    On the application of neural networks for temperature field measurements using thermochromic liquid crystals

    Get PDF
    This study presents an investigation regarding the applicability of neural networks for temperature measurements using thermochromic liquid crystals (TLCs) and discusses advantages as well as disadvantages of common calibration approaches. For the characterization of the measurement technique, the dependency of the color of the TLCs on the temperature as well as on the observation angle and, therefore, on the position within the field of view of a color camera is analyzed in detail. In order to consider the influence of the position within the field of view on the color, neural networks are applied for the calibration of the temperature measurements. In particular, the focus of this study is on analysis of the error of temperature measurement for different network configurations as well as training methods, yielding a mean absolute deviation and a mean standard deviation in the range of 0.1 K for instantaneous measurements. On the basis of a comparison of this standard deviation to that of two further calibration approaches, it is shown that neural networks are suited for temperature measurements via the color of TLCs. Finally, the applicability of this measurement technique is illustrated at an exemplary temperature measurement in a horizontal plane of a Rayleigh-BĂ©nard cell with large aspect ratio, which clearly shows the emergence of convective flow patterns by means of the temperature field

    Long-time experimental investigation of turbulent superstructures in Rayleigh-BĂ©nard convection by noninvasive simultaneous measurements of temperature and velocity fields

    Get PDF
    Large-scale mean patterns in Rayleigh-BĂ©nard convection, also referred to as turbulent superstructures, have mainly been studied by means of numerical simulations so far, but experimental investigations are still rare. However, the analysis of turbulent superstructures, which are of great importance due to their effect on the local transport of heat and momentum, require both numerical and experimental data. Therefore, within the scope of this study measurements were performed in the horizontal mid plane and in a horizontal plane closer to the top of a Rayleigh-BĂ©nard cell with an aspect ratio of [Gamma]=l/h=25, thereby showing the initial formation of turbulent superstructures and their long-time rearrangement. The turbulent superstructures are investigated experimentally by noninvasive simultaneous measurements of temperature and velocity fields, using the color signal of thermochromic liquid crystals (TLCs) for the evaluation of the temperature and their temporal displacement for the determination of all three velocity components in the measurement planes via stereoscopic particle image velocimetry (stereo-PIV). Applying this measuring technique it is demonstrated that the time-averaging of instantaneous temperature and velocity fields uncovers the turbulent superstructures in both fields. Furthermore, the combination of the temperature and velocity data is used to characterize the local heat flux quantified by the local Nusselt number, which confirms that the turbulent superstructures strongly enhance the heat transfer in Rayleigh-BĂ©nard convection

    Optical measurements on thermal convection processes inside thermal energy storages during stand-by periods

    Get PDF
    Thermal energy storages (TES) are increasingly important for storing energy from renewable energy sources. TES that work with liquid storage materials are used in their most efficient way by stratifying the storage fluid by its thermal density gradient. Mixing of the stratification layers during stand-by periods decreases the thermal efficiency of the TES. Tank sidewalls, unlike the often poorly heat-conducting storage fluids, promote a heat flux from the hot to the cold layer and lead to thermal convection. In this experimental study planar particle image velocimetry (PIV) measurements and background-oriented schlieren (BOS) temperature measurements are performed in a model experiment of a TES to characterise the influence of the thermal convection on the stratification and thus the storage efficiency. The PIV results show two vertical, counter-directed wall jets that approach in the thermocline between the stratification layers. The wall jet in the hot part of the thermal stratification shows compared to the wall jet in the cold region strong fluctuations in the vertical velocity, that promote mixing of the two layers. The BOS measurements have proven that the technique is capable of measuring temperature fields in thermally stratified storage tanks. The density gradient field as an intermediate result during the evaluation of the temperature field can be used to indicate convective structures that are in good agreement to the measured velocity fields

    Viscous boundary layers in turbulent Rayleigh-BĂ©nard convection

    Get PDF
    Highly resolved local velocity profiles inside the boundary layers in turbulent Rayleigh-Bénard convection in air are presented and discussed. The present work makes progress to our work in the past (see du Puits & Resagk, 2007) that our actual set-up permits the measurement of the wall-normal velocity component w up to a distance of 200 mm away from the wall. All component profiles were performed in a cylindrical box with an aspect ratio Γ = 1, a Prandtl number Pr = 0.7 and Rayleigh numbers Ra = 3 × 10 9 , Ra = 3 × 10 10 . We compare the experimental results with numerics at Ra = 3 × 10 10 directly. We found that the profiles of mean velocity from both experiments and numerics collapse very well with each other and both of the mean horizontal velocity profiles differ from the laminar Blasius prediction at the boundary layer. The wall-normal mean velocity at the central window tends to zero in both experiment and numerics

    Thermal boundary layers in turbulent Rayleigh-BĂ©nard convection at aspect ratios between 1 and 9

    Get PDF
    We report highly resolved temperature measurements in turbulent Rayleigh–Bénard convection in air at a fixed Prandtl number Pr = 0.7. Extending our previous work (du Puits et al 2007 J. Fluid Mech. 572 231–54), we carried out measurements at various aspect ratios while keeping the Rayleigh number constant. We demonstrate that the temperature field inside the convective boundary layers of both horizontal plates is virtually independent on the global flow pattern accompanying the variation in the aspect ratio. Thanks to technical upgrades of the experimental facility as well as a significant improvement of the accuracy and reliability of our temperature measurement — and unlike in our previous work — we find that the measured profiles of the time-averaged temperature field neither follow a clear power-law trend nor fit a linear or a logarithmic scaling over a significant fraction of the boundary-layer thickness. Analyzing the temperature data simultaneously acquired at both horizontal plates, various transitions in the cross-correlation and the auto-correlation function of the temperature signals are observed while varying the aspect ratio Γ. These transitions might be associated with a change in the global flow pattern from a single-roll mode at Γ = 1 toward a double- or a multi-roll mode pattern at higher aspect ratios

    Influence of the illumination spectrum and observation angle on temperature measurements using thermochromic liquid crystals

    Get PDF
    As measurements of velocity and temperature fields are of paramount importance for analyzing heat transfer problems, the development and characterization of measuring techniques is an ongoing challenge. In this respect, optical measurements have become a powerful tool, as both quantities can be measured noninvasively. For instance, combining particle image velocimetry (PIV) and particle image thermometry (PIT) using thermochromic liquid crystals (TLCs) as tracer particles allows for a simultaneous measurement of velocity and temperature fields with low uncertainty. However, the temperature dependency of the color appearance of TLCs, which is used for the temperature measurements, is affected by several experimental parameters. In particular, the spectrum of the white light source, necessary for the illumination of TLCs, shows a greater influence on the range of color play with temperature of TLCs. Therefore, two different spectral distributions of the white light illumination have been tested. The results clearly indicate that a spectrum with reduced intensities in the blue range and increased intensities in the red range leads to a higher sensitivity for temperature measurements, which decreases the measurement uncertainty. Furthermore, the influence of the angle between illumination and observation of TLCs has been studied in detail. It is shown that the temperature measurement range of TLCs drastically decreases with an increasing angle between illumination and observation. A high sensitivity is obtained for angles in between and , promising temperature measurements with a very low uncertainty within this range. Finally, a new calibration approach for temperature measurements via the color of TLCs is presented. Based on linear interpolation of the temperature dependent value of hue, uncertainties in the range of 0.1 K are possible, offering the possibility to measure very small temperature differences. The potential of the developed approach is shown at the example of simultaneous measurements of velocity and temperature fields in Rayleigh–Bénard convection

    An artificial vibrissa-like sensor for detection of flows

    Get PDF
    In nature, there are several examples of sophisticated sensory systems to sense flows, e.g., the vibrissae of mammals. Seals can detect the flow of their prey, and rats are able to perceive the flow of surrounding air. The vibrissae are arranged around muzzle of an animal. A vibrissa consists of two major components: a shaft (infector) and a follicle–sinus complex (receptor), whereby the base of the shaft is supported by the follicle-sinus complex. The vibrissa shaft collects and transmits stimuli, e.g., flows, while the follicle-sinus complex transduces them for further processing. Beside detecting flows, the animals can also recognize the size of an object or determine the surface texture. Here, the combination of these functionalities in a single sensory system serves as paragon for artificial tactile sensors. The detection of flows becomes important regarding the measurement of flow characteristics, e.g., velocity, as well as the influence of the sensor during the scanning of objects. These aspects are closely related to each other, but, how can the characteristics of flow be represented by the signals at the base of a vibrissa shaft or by an artificial vibrissa-like sensor respectively? In this work, the structure of a natural vibrissa shaft is simplified to a slender, cylindrical/tapered elastic beam. The model is analyzed in simulation and experiment in order to identify the necessary observables to evaluate flows based on the quasi-static large deflection of the sensor shaft inside a steady, non-uniform, laminar, in-compressible flow
    corecore