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Abstract. We report highly resolved temperature measurements in turbulent
Rayleigh–Bénard convection in air at a fixed Prandtl number Pr = 0.7.
Extending our previous work (du Puits et al 2007 J. Fluid Mech. 572 231–54),
we carried out measurements at various aspect ratios while keeping the Rayleigh
number constant. We demonstrate that the temperature field inside the convective
boundary layers of both horizontal plates is virtually independent on the global
flow pattern accompanying the variation in the aspect ratio. Thanks to technical
upgrades of the experimental facility as well as a significant improvement of
the accuracy and reliability of our temperature measurement—and unlike in
our previous work—we find that the measured profiles of the time-averaged
temperature field neither follow a clear power-law trend nor fit a linear or a
logarithmic scaling over a significant fraction of the boundary-layer thickness.
Analyzing the temperature data simultaneously acquired at both horizontal
plates, various transitions in the cross-correlation and the auto-correlation
function of the temperature signals are observed while varying the aspect
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ratio 0. These transitions might be associated with a change in the global flow
pattern from a single-roll mode at 0 = 1 toward a double- or a multi-roll mode
pattern at higher aspect ratios.

S Online supplementary data available from stacks.iop.org/NJP/15/013040/
mmedia

Contents

1. Introduction 2
2. The experimental set-up and the measurement technique 5

2.1. Experimental facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Measurement technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Results 10
3.1. Self-similarity of the temperature field . . . . . . . . . . . . . . . . . . . . . . 10
3.2. Dynamics of coherent structures and the coupling of the boundary layers . . . . 14

4. Conclusions 20
Acknowledgments 21
References 21

1. Introduction

The heat transfer from a hot (cold) solid surface to a surrounding fluid, commonly referred
to as thermal convection, plays a key role in many natural flow phenomena as well as in
countless technical applications. Since Ludwig Prandtl’s famous experiments at the beginning
of the last century, we know that the heat transfer coefficient α in Newton’s law of cooling qc =

α(Ts − T∞), Ts being the surface temperature and T∞ the fluid temperature, strongly depends
on the temperature and the velocity field close to the wall. However, it is still unclear whether
or not the structure of the driving (outer) flow may change the temperature field inside this so-
called boundary layer. The purpose of the present work is to answer this question performing
a series of highly resolved temperature measurements in a large-scale Rayleigh–Bénard (RB)
experiment with air at various width-to-height ratios.

Among the heated horizontal or vertical flat plates, the RB set-up is also a very popular
model flow to study thermal convection under well-controlled conditions. A fluid layer of
depth H is heated from below and cooled from above [1–3], forming convective boundary
layers at both horizontal plates. The RB experiment is characterized by the Rayleigh number
Ra = (βg1ϑ H 3)/(νκ), a dimensionless number that quantifies the ratio between buoyancy
and inertial forces, and the Prandtl number Pr = ν/κ describing the properties of the fluid.
Here, the variables β, g, 1ϑ , ν and κ denote the thermal expansion coefficient, the gravitational
acceleration, the temperature difference between the hot bottom and the cool top plate, the
kinematic viscosity and the thermal diffusivity, respectively. In the case where the fluid layer is
laterally confined by sidewalls, the aspect ratio 0 = D/H , with D being the lateral dimension,
has to be added to the set of parameters. For Rayleigh numbers below a critical value Rac, the
fluid remains at rest and heat is conducted throughout the fluid layer. Exceeding this bound, it
starts to move, initiating a convective heat transfer between the horizontal plates. Both, the
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heat flux and the velocity of the flow, are quantified by the Nusselt number Nu = Qc/Qd

and the Reynolds number Re = v̄H/ν, respectively. In these definitions, Qc and Qd stand for
the convective and the diffusive heat flow and v̄ is the typical mean velocity of the flow. In
turbulent RB convection, boundary layers are of particular interest since they mainly determine
the convective heat transport throughout the fluid layer—one of the fundamental questions when
studying RB convection. Previously, scaling laws of the form Nu = f (Ra, Pr) have been
established to describe the correlation between the applied input quantities and the resulting
heat transport. Considering the great variety of natural or engineering convection phenomena,
it quickly becomes obvious that the aspect ratio of the enclosure also plays a crucial role in this
process. Whereas many natural flows, such as e.g. atmospheric and oceanic drifts [4], or the
motion of the viscous rock in the outer Earth’s mantle [5], are confined in a very flat fluid layer,
indoor flows [6] or convection in chemical or nuclear reactor chambers take place in enclosures
with a rather uniform geometry. Also in many other engineering problems facing a single heated
or cooled surface adjoining a virtually infinite fluid layer (0 → 0), convective boundary layers
develop.

RB convection has previously been studied very frequently in samples of 0 6 1 to realize
a Ra number as high as possible but keeping the lateral extent of the experiments small [7–10].
In these experiments, the vertical sidewall strongly affects the flow and shapes a large-scale
circulation often referred to as the mean flow or wind. In a phenomenological theory, Grossmann
and Lohse [11–13] predict the global heat flux and the typical velocity of the convective motion
as a function of the input parameters Ra, Pr and 0. While this theory has proven to be quite
successful in providing the global scaling behavior for RB convection at 0 = 1, it provides
only a qualitative prediction for larger aspect ratios [13]. In small aspect ratio cells of the
order of unity, it is usually assumed that one convection roll evolves. This roll is the subject
of a large variety of dynamic processes such as rotations of the flow plane, cessations or even
complete reversals [14–18]. With increasing the aspect ratio, however, this large convection
roll breaks down into smaller structures as indicated in various papers in the past. Niemela
and Sreenivasan [19] and du Puits et al [20] have investigated the structure of the global flow
field analyzing local temperature and velocity data. They found clear evidence of significant
transitions in the signals and associated these transitions with the evolution of the wind from
one shape to another. In a very comprehensive numerical study covering an aspect ratio domain
of 0.5 < 0 < 12 and Rayleigh numbers between 107 < Ra < 109, Bailon-Cuba et al [21] have
illustrated the variation in the global flow field very well. In their figure 5, they show flow
patterns for aspect ratios 0 = 2.5, 3.0 and 6.0 demonstrating the transition from a large single-
to a multi-roll flow structure. These transitions were accompanied by a variation of 10% in the
global Nusselt number. The dependence Nu(0) in gases with Pr = 0.7 has been confirmed
experimentally by Fleischer and Goldstein [22] as well as Niemela and Sreenivasan [19].
For higher Prandtl number fluids such as water (Pr = 4), Funfschilling et al [23] and Sun
et al [24] reported a weaker change of the order of a few per cent in Nu. Zhou et al [25]
even found that in a rectangular cell with a base area of 50 cm×15 cm the Nusselt number is
independent of the aspect ratio. Again, the authors of this work argued that the weak aspect
ratio dependence observed in cylindrical cells is a manifestation of the finite plate conductivity.
In a recent numerical study on two-dimensional (2D) RB convection (which, however, may not
cover the full dynamical behavior of three-dimensional (3D) RB convection), van der Poel and
co-workers [26] explained, by associating characteristic flow structures with the corresponding
heat flux, why the aspect ratio dependence of the Nusselt number is more pronounced for small
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Prandtl numbers. It is also known that the shape of the sample may affect the heat flux [27–29].
Up to now, it is still unclear whether this variation in the heat flux is caused by boundary
layer effects or by the transitions in the structure of the global flow field. The velocity and the
temperature fields inside the boundary layers have been studied in detail previously [30–34].
However, most of the experimental works were focused on RB cells of aspect ratio 0 = 1.
In two very recent papers, du Puits et al [35, 36] report on highly resolved velocity and
temperature measurements at the cooling plate of a large RB experiment at various aspect
ratios. They found that the mean profiles of velocity and temperature at the central axis of the
experiment are invariant while changing the aspect ratio. But, due to experimental restrictions,
they could not study the pure aspect ratio dependence since the variation in 0 has always been
accompanied by a change in the Rayleigh number in this series of experiments.

Besides the problem of the self-similarity of the mean temperature profiles with different
aspect ratios, there is still no consensus whether or not classical boundary layer models are
suited to describe the flow field close to the horizontal plates [3, 34, 37, 38]. One of the
prevailing models for not too high Ra numbers is the laminar boundary layer according
to Prandtl/Blasius [39, 40]. The main assumptions for this model are, briefly summarized,
stationarity, a strict 2D flow with a fixed orientation and a uniform temperature yielding a
virtually linear rise of the velocity with increasing the plate distance. For the case where
the temperature of the plate (slightly) differs from the fluid temperature, the model has been
extended by Pohlhausen [41], who pointed out that the mean temperature follows the same
scaling with respect to the plate distance as the mean velocity does. Although it is well
known that the flow field in turbulent RB convection contradicts these assumptions, it could be
demonstrated in very recent direct numerical simulations that this model seems to be appropriate
to describe the velocity and temperature field inside the thermal boundary layer [42, 43]. While
the agreement is very good for high Prandtl number fluids such as e.g. water, the deviations
are significant for low Prandtl number gases such as e.g. air [38, 43]. Linear temperature
profiles of the form T ∼ z have been measured by Belmonte et al [31] and Lui and Xia [32]
by running experiments in water at Ra numbers up to Ra ≈ 1010. Experimental data for low
Prandtl number fluids such as air are rare and mostly date back to a few decades ago. For
instance, Townsend [44] and Deardorff and Willis [45] probed the near-wall temperature field
using cold wires of the order of 1 µm in diameter and 1 mm long. They obtained nonlinear
profiles as well, even though their experiments were performed at low Ra numbers. It should be
noted here that in all these experiments sensors have been used that are comparable in size with
the entire thickness of the boundary layer. Due to this fact the accuracy of those measurements
inside the boundary layer was low and it was virtually impossible to discriminate between a
linear or a nonlinear scaling. It can be summarized that a large variety of experimental results
exist but none of them is convincingly evaluated. Linear temperature profiles mainly obtained
in very recent DNS are solely supported by measurements at higher Prandtl numbers but not at
lower ones.

A question more related to the dynamics of the flow in turbulent RB convection
controversially discussed in the past as well is the effect of the evolution of coherent structures
on the heat transport. While, e.g., Villermaux [46] proposed a model of a delayed ‘coupling
of boundary layer instabilities by the slow convective motion of the recirculation’ where
these instabilities evolve alternately and periodically at both horizontal plates, Xi et al [47]
found that they are emitted neither periodically nor alternately from the top and bottom
plates.
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In the present work, we went beyond the scope of our measurements in the past and
performed a new series of simultaneous temperature measurements near the cooling and the
heating plates by varying the aspect ratio but keeping the Rayleigh number constant. The
Prandtl number was fixed at Pr = 0.7. All measurements have been carried out in a large-scale
facility called ‘Barrel of Ilmenau’ and cover, within the experimental limits due to the maximum
temperature difference, the following parameter domains:

1. 1.136 0 6 2.75, Ra1 = 5.2 × 1010;

2. 2.756 0 6 7.00, Ra2 = 3.8, . . . , 4.0 × 109;

3. 7.00 < 0 6 9.00, Ra3 = 1.3 × 109.

Thanks to an upgrade of the heating system and an optimization of the geometry of the
temperature sensor used (details can be found in [48]), the accuracy and the reliability of
our temperature measurement have been significantly improved. Using commercial heat flux
sensors at the surfaces of the plates close to the location of the temperature sensors, the
gradients of the mean temperature at both walls have been verified by this complementary and
independent heat flux measurement. In this paper, we wish to answer the following questions.

• Do the aspect ratio and the undoubtedly concomitant transitions in the global flow structure
affect the temperature field near the horizontal plates?

• Is there a prevailing scaling relation 2(z) within the thermal boundary layers in turbulent
RB convection in air at Pr = 0.7?

• Is there a coupling mechanism between the thermal boundary layers at various aspect
ratios?

The paper is organized as follows. In section 2, the experimental facility and the measurement
technique are described. In section 3, we discuss the profiles of the mean temperature and the
temperature fluctuations close to the horizontal plates as well as the applicability of various
scaling laws. Section 4 focuses on correlations of simultaneously acquired temperature signals
in both boundary layers, and in section 5 our conclusions are summarized.

2. The experimental set-up and the measurement technique

2.1. Experimental facility

Our measurements have been carried out in a cylindrical RB cell of a fixed diameter D = 7.15 m.
The working fluid is air with a Prandtl number Pr = 0.7 virtually independent of temperature.
The fluid is confined between the heated bottom plate and the free-hanging cooling plate as well
as a virtually adiabatic sidewall. The bottom plate actually used in the experiment consists of two
parts: an electrical underfloor heating system embedded in a 5 cm concrete layer and isolated
to the ground with 0.3 m polyurethane plates and an overlay in which water circulates. The
water circulation inside this overlay makes the temperature at the surface of the heating plate
uniform and balances the differences of the convective heat flux at the plate–air interface. Both
layers are thermally coupled by a 2 mm silicon pad. We wish to note here that, compared with
our previous work published in [20], the new set-up significantly homogenizes the temperature
distribution at the surface of the heating plate (see figure 1). The temperature at the heating
plate has been adjusted in a range between Th = 31.2 and 58.2 ◦C. The deviation of any local
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Figure 1. Temperature distribution at the surface of the heating plate
(a) and the cooling plate (b) at Th − Tc = 35.2 K, 0 = 2.75 and Ra = 5.2 × 1010.
The plots show the relative deviation 1Th = 100 [Th(x, y) − Th]/[Th − Tc] and
1Tc = 100 [Tc − Tc(x, y)]/[Th − Tc] in per cent of the total temperature drop
between the plates. The crosses indicate the position of the internal temperature
sensors. The radial temperature distribution at each segment is a projection of the
measured distribution along the horizontal line, whereas the angular distributed
temperature sensors are used as basic values.

temperature at the surface from the global mean temperature was typically less than ±1% of the
total temperature drop between the plates (±1.5% at the cooling plate). Over the period of one
measurement, the mean surface temperature varies in a band ±0.02 K.

The free-hanging cooling plate consists of 16 segments with water circulation inside
as well. The segments are mounted on a solid steel construction and are separately leveled
perpendicular to the vector of gravity. The entire construction with a weight of about 6 tons
is mounted on a crane and can be lifted up and down. A small gap between the plate and the
sidewall required to freely move the plate is hermetically sealed with strips of foam during the
experiments. In the present experiments, we set the temperature of the cooling plate between
Tc = 28.8 and 12.4 ◦C with the same accuracy as indicated for the heating plate. The plate
distance has been varied from H = 6.30 m to 0.79 m covering aspect ratios between 0 = 1.13
and 9.00. The sidewall of the RB cell is shielded by an active compensation heating system to
prevent heat exchange with the surroundings. Electrical heating elements are arranged between
an inner and an outer isolation of 16 and 12 cm thickness, respectively. The temperature of these
elements is controlled to be equal to the temperature at the inner surface of the wall. We have
checked the heat loss setting the temperature of both plates to 30.0 ◦C, the fluid temperature that
was maintained in the well-mixed bulk region during our experiments. In the case of a perfectly
adiabatic side wall, the fluid temperature has to be exactly the same. We have measured 29.9 ◦C,
a deviation that indicates a very small heat loss not exceeding 0.5% of the convective heat flux
in the experiments. For more detailed information see [20].
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heating/cooling plate

thermistor, 125µm
leads, 18µm

support, 300µm

brass rod, 4mm

heat flux sensor
qw [W/m²]

0.01D

20mm1.
2m

m
Figure 2. Set-up of the temperature and the heat flux measurement at the heating
plate. The temperature sensor can be moved up and down. The heat flux sensor
is mounted using a thermally conducting glue. The upper right picture shows a
strongly enlarged photograph of the microthermistor and its attachment at the
support.

2.2. Measurement technique

Local temperature measurements have been carried out inside and outside the boundary layers.
Here, we refer to as boundary layers those regions where the temperature increases or decreases
from the plate temperature to the temperature of the well-mixed core. It should be noted as well
that the typical thickness of this region is of the order of 1 cm in our 6.30 m-high RB cell,
at the maximum possible Rayleigh number Ra = 1012. Therefore, we used very small, glass
encapsulated microthermistors (temperature-dependent resistors) of size 125 µm to probe the
temperature field. All measurements were carried out along the central axis of the cylindrical RB
cell and cover distances between z ≈ 70 µm (corresponding to the radius of the microthermistor)
and z ≈ 150 mm. The thermistors are connected to the tips of two 0.3 mm supports by 18 µm
wires (see figure 2). Due to the strong temperature gradients close to the wall and unlike in our
experiments in the past [20], we take care to align these connecting wires exactly parallel to
the plates and along the iso-surfaces of constant mean temperature in the flow. This prevents
measurement errors of the order of a few degrees kelvins [48], and the accuracy particularly
very close to the plate surfaces could be improved by a factor of about 20 compared to those
measurements in the past. Another source of measurement uncertainty is the spatial averaging
of the sensor in the high-temperature gradient flow field close to the wall. This issue may distort
(linearize) the natural shape of the temperature field inside the boundary layer. In the work
reported here, the maximum gradients have been measured at 0 = 7.01 and Ra = 3.79 × 109.
They amount to dT /dz |(z=0)= 8.6 K mm−1 and dT /dz |(z=0)= 9.9 K mm−1 right at the surface
of the heating and the cooling plates (see qh and qc in table 2). Considering the sensor as a sphere
with a diameter of 125 µm the temperature drop across the sensor amounts to 1Ts = 1.075 K
and 1Ts = 1.237 K, respectively, or, expressed in units of the total temperature drop across the
boundary layer, to 1T ∗

s = 1Ts/(Th − Tb) = 0.048 and 1T ∗

s = 1Ts/(Tb − Tc) = 0.054. We wish
to note here that these values are the absolute maxima at this particular parameter set, while the
temperature drop was significantly smaller during the other measurements.
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Figure 3. The measured mean temperature profile T (z) at the heating plate at
0 = 2.25 and Ra = 5.2 × 1010 (•, red online). The value T (z = 0 mm) = Th =

39.583 ◦C is the temperature at the surface of the heating plate. The slope
of the black line fits the temperature gradient obtained from the independent
measurement of the local wall heat flux (equation (1)).

Before starting the measurements, the sensors were calibrated in a calibration chamber. A
resistance temperature detector (RTD) of PT 100 type certified by the Deutsche Kalibrierdienst
was used as the reference. The measurement uncertainty of this sensor is specified with 0.02 K
in the range between 0 and 100 ◦C. We determined the temperature of the microthermistor in
the flow field by measuring its resistance and recomputing the temperature according to the
calibration curve. A special bridge with an internal amplifier provides a very low measurement
current of ITh = 5 µA sufficiently small to keep the self-heating of the sensor as low as 10 mK.
The bridge was connected to a PC-based multi-channel data acquisition system with a resolution
of 10−4 K and a sampling rate of 200 s−1.

In order to validate the near-wall measurements, heat flux sensors were placed nearby at the
plate surface. These sensors with an active area of 3.14 cm2 provide the local wall heat flux qw.
The temperature drop across the sensors did not exceed 3.5% of the total temperature difference
between the plates. According to Fourier’s law of heat conduction they permit the calculation
of the temperature gradient dT /dz at the plate surfaces:

dT

dz
|(z=0)= −

qw

λ
(λ is heat conductivity). (1)

This gradient can be compared with the mean temperature profiles T (z) obtained from the
microthermistors and provides an idea of how well both measurements coincide. A typical
example at an aspect ratio 0 = 2.5 and an Ra number Ra = 5.2 × 1010 is shown in figure 3.
Very close to the wall the mean temperature profile obtained from the thermistor measurement is
in excellent agreement with the gradient obtained from the independent heat flux measurement.
Starting at z ≈ 0.2 mm the mean temperature profile deviates from the constant gradient. We are
aware of this difference to other measurements in RB convection in water at Pr ≈ 5 [31, 32] and
very recent direct numerical simulations [34, 38, 49] in air at Pr = 0.7 that shows linear profiles
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Table 1. Set of parameters for the variable aspect ratio measurement series, with
0 and Ra being the aspect ratio and the Rayleigh number, H the plate distance
and Th and Tc the plate temperatures.

0 Ra H (m) Th (◦C) Tc (◦C)

1.13 5.20 × 1010 6.33 31.20 28.80
1.25 5.18 × 1010 5.72 31.60 28.40
1.50 5.25 × 1010 4.77 32.80 27.00
1.75 5.26 × 1010 4.09 34.50 25.50
2.00 5.26 × 1010 3.58 36.70 23.30
2.25 5.20 × 1010 3.18 39.50 20.50
2.50 5.19 × 1010 2.86 43.10 16.90
2.75 5.20 × 1010 2.60 47.60 12.40
2.75 4.00 × 109 2.60 31.43 28.80
3.00 3.90 × 109 2.38 31.78 28.44
4.00 3.95 × 109 1.79 34.23 26.00
5.00 3.85 × 109 1.43 37.93 22.30
6.00 3.86 × 109 1.19 43.53 16.70
7.01 3.79 × 109 1.02 58.23 13.00
9.00 1.31 × 109 0.79 45.23 15.00

over a significant fraction of the boundary layer. However, we believe that our measurements
are well verified for the following reasons:

• Each sensor has passed a complex calibration process, resulting in an accuracy of better
than ±10 mK.

• In addition to the profile measurement with the micro-thermistor, the plate temperature at
the cell center (see figure 3, T̄ (z = 0 mm)) and the temperature in the bulk (T̄ (z → ∞),
not shown) have been measured with two independent temperature probes. The measured
values coincide very well.

• The gradient of the mean temperature profile reflects the independently measured local heat
flux at the plate surface very well (see figure 3, the full line corresponds to the temperature
gradient according to equation (1)).

• The size of the sensor is very small compared with the typical boundary-layer thickness
and amounts to only about 1/100 of the latter one.

• The plate surface within a radius of 0.5 m around the measurement position is smooth. The
roughness amounts to less than 5 µm, corresponding to 0.05% of the minimal boundary-
layer thickness.

2.3. Experimental procedure

The particular challenge of this experimental work entails studying RB convection at various
aspect ratios but keeping the Rayleigh number constant. Unlike in our previous work [35] where
a change in the aspect ratio was always accompanied by a variation in the Rayleigh number, here
we compensated the latter one by varying the temperature difference 1T = Th − Tc between the
plates (see table 1). Moreover, we kept the temperature Tb in the well-mixed bulk constant. Since
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this is feasible in experiments only in a limited domain of 0 the full parameter domain is split
into the following three ranges:

1. 1.136 0 6 2.75, Ra1 = 5.2 × 1010;

2. 2.756 0 6 7.00, Ra2 = 3.8, . . . , 4.0 × 109;

3. 7.00 < 0 6 9.00, Ra3 = 1.3 × 109.

In this way, we have measured temperature profiles T (z, t) at 14 aspect ratios. Before we started
a new measurement, the experiment has run at least 3 days to become stationary. We determined
the position z = 0 mm according to the following procedure. In a first step, we monitored the
visual contact of the sensor with the plate surface using a microscope camera. The position has
been refined by checking the electrical contact between the sensor and the conducting plate and
we ended up with an accuracy of ±20 µm. The final adjustment has been obtained after the
measurement by shifting the mean temperature profile T (z) along the z-axis until it collapses
with the plot of the temperature gradient dT /dz resulting from the independently measured
local heat flux (see figure 3). For each of the profiles, we captured time series of temperature at
35 positions using a finer grid resolution inside the boundary layer and a coarser one outside.
In order to estimate the statistical uncertainty of the mean values T (z), we estimated the 95%
confidence interval. For our 90 min measurement period, the error did not exceed ±0.1 K even
in the transition region between the boundary layer and the bulk where the strongest fluctuations
have been observed.

3. Results

3.1. Self-similarity of the temperature field

We start our discussion by presenting profiles of the normalized mean temperature 2̄h(z) =

2[Th − T (z)]/[Th − Tc] and 2̄c(z) = 2[T (z) − Tc]/[Th − Tc] at different aspect ratios. In order
to make them comparable, a proper scaling variable for the wall–normal distance z is required.
This variable is supposed to compensate for the change in the thermal boundary-layer thickness
that accompanies variations of Ra or 0 and permits the evaluation of the pure shape of the
profiles. Here, we did not follow the usual practice of using the boundary-layer thickness
based on the crossing of the mean temperature gradient at the wall with the asymptotic bulk
temperature. Firstly, it is a great challenge to measure this gradient with a sufficiently high
accuracy and, secondly, we believe that the thermal displacement thickness δt represents a better
suited quantity as it takes into account the entire shape of the mean temperature profile and not
only the region very close to the wall. Within the measurement domain 0 < z < zmax the thermal
displacement thickness is defined as

δt =

∫ zmax

0

{
1 − 2(z)

}
dz. (2)

In figure 4, the displacement thickness δt scaled by the plate distance H is plotted. Because
of the experimentally limited range of 0 where the Rayleigh number could be kept constant,
the diagram is divided into three parts according to section 2.3. For very low aspect ratios
of 0 6 1.5, the scatter of the local boundary-layer thickness is relatively strong. This is very
close to the critical aspect ratio where a transition from a single- to a double-roll state has been
observed [50, 51]. This process is characterized by extremely long time scales of hundreds
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and the cooling (4, blue online) plates as functions of the aspect ratio 0 for
piecewise constant Rayleigh number.

of eddy turnovers. Thus, it is very likely that the scatter is caused by an insufficiently long
averaging time. For higher aspect ratios 0 > 2.0, the data are smoother and the dependence
of the boundary-layer thickness on 0 is more distinct. It can be expressed by a power law:
δt/H ∼ 0γ with a local exponent of γ = 0.29.

Having found the appropriate scaling quantity δt we now turn to the central question of our
work: do the local profiles in the center of the heating and cooling plates depend on the aspect
ratio? We plot a selection of the normalized mean temperature profiles 2(z/δt) at aspect ratios
between 0 = 1.13 and 7.00 in figure 5. The full set of data is available online as supplementary
material. All profiles obtained at one plate turn out to be similar. The deviation does not exceed
10%. Small deviations visible in the lin–lin representation in the insets might be associated with
non-Boussinesq effects due to the change in the temperature drop 1T (see table 1). It amounts
to 1ϑ = 2.4 K in the experiment at 0 = 1.13 and 1ϑ = 45 K in the 0 = 7.0 experiment. While
the variation of the fluid properties can be neglected for the minimum temperature difference,
it is worthy to note that, e.g., the heat conductivity λ varies by about 15% across the cell
for the highest one. This variation causes that the temperature gradients at the surface of
the heating and the cooling plates differ by 15% as well. The thermal diffusivity κ and the
kinematic viscosity ν vary by even 30%, but to our knowledge there is not any theoretical
model or numerical simulation that takes this into account and allows estimation of how this
affects the local temperature profiles. Therefore, it cannot be fully ruled out that these small
deviations are caused by the variation in the aspect ratio and the global flow pattern, respectively.
However, we argue that the deviation is clearly linked to the increasing temperature difference
between the plates (the lower curve is for 0 = 1.13 and 1ϑ = 2.40 K; the upper one is for
0 = 7.01 and 1ϑ = 45.23 K; cf table 1), whereas data at a very similar temperature difference
but different aspect ratios (0 = 2.00, 1ϑ = 13.40 K and 0 = 4.00, 1ϑ = 8.23 K) collapse quite
well. An influence of the Ra number on the shape of the profiles, however, can be precluded
as demonstrated in previous works by Lui and Xia [32], du Puits et al [35] and Maystrenko
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Figure 5. Profiles of the normalized mean temperature 2h(z/δt) at the heating
(a) and 2c(z/δt) at the cooling (b) plates for various aspect ratios 0 = 1.13
and Ra = 5.2 × 1010 (◦, blue online), 0 = 2.00 and Ra = 5.3 × 1010 (+, red
online), 0 = 4.00 and Ra = 3.9 × 109 (�, black online), and 0 = 7.00 and Ra =

3.8 × 109 (O, green online). The insets show the region within the boundary
layer in a lin–lin representation. The full set of data is available online as
supplementary material (available from stacks.iop.org/NJP/15/013040/mmedia).

et al [52]. At first glance, the self-similarity of the profiles is surprising. Based on the concept
of one large single roll at an aspect ratio of about unity, it was expected that the distinct shear
layer at the surface of the horizontal plates vanishes and the structure of the temperature (and the
velocity) field inside the boundary layer changes when the single roll breaks down into smaller
structures. Obviously, this is not the case. Now one may argue that the motion of the large-scale
circulation in RB samples of cylindrical shape is a very complicated interference of a large
variety of basic flow modes with different time scales [51]. Also, the visualization of the global
flow using cloudlets of fog [53] or applying the shadowgraph technique [54] does not show a
singular orientation of the flow over at least one eddy turnover time. Considering the strongly
varying time scales of the horizontal velocity and its orientation in the vicinity of the cooling
plate [55], we conclude that the simple model of one single-roll structure might be insufficient
to describe the large-scale motion in cylindrical RB cells of aspect ratio 1. In fact, the convective
flow is a collection of smaller fluid structures such as eddies, twisters, plumes and other varieties
that move along the plates permanently changing the orientation of the local flow vector. This
chaotic flow with at least two significant velocity components creates boundary layers strongly
different from the model of a Prandtl/Blasius shear layer, which implies a well-oriented incident
flow with only one predominant and temporally stable velocity component. Following this idea,
one would expect also the observed deviation of the measured mean temperature profile from
Pohlhausen’s model. It seems to be easy to carry over this idea to higher aspect ratios and to
explain the conservation of the mean temperature profiles with it.
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(a) and σc(z/δt) at the cooling (b) plates for various aspect ratios 0 = 1.13
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Ra = 3.8 × 109 (O, green online). The insets show the entire domain. The
full set of data is available online as supplementary material (available from
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Next, we wish to check whether the profiles of the root-mean-square (rms) temperature
fluctuations expressed as

σ(z) =
2

1T

{
1

N − 1

N∑
i=1

[Ti(z) − T (z)]2

}1/2

, (3)

where T (z) is the mean temperature—also remain unchanged with increasing the aspect ratio as
well. In figure 6, we plot σ(z/δt) for the same selection of aspect ratios between 0 = 1.13 and
7.00 as done before. We would like to focus our discussion on the rising slope of the profiles.
The gradient ∂σ/∂(z/δt) remains constant up to 70% of the maximum of the fluctuations and
is virtually equal for all aspect ratios. The position of the maxima coincides fairly well with
z/δt = 1, supporting that the displacement thickness is a well-suited basis to judge about the
conservation of the typical flow field. The position of the maxima corresponds as well with
the position where about 70% of the maximum temperature drop across the boundary layer
is reached, which is in good agreement with early measurements in water reported by Tilgner
et al [56] and Lui and Xia [32].

Having discussed the self-similarity of the mean temperature profiles and its fluctuations,
we turn to our second question expressed in section 1: do the mean temperature profiles 2(z/δt)

correspond to a linear, logarithmic or a power-law scaling function? The redesigned temperature
sensor improving the accuracy and the reliability of the measurement by a factor of about 10
enables us to apply the following diagnostic functions:

X =
d2

d(z/δt)
, (4)
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Z =
d2

d [log(z/δt)]
, (5)

4 =
d [log(2)]

d [log(z/δt)]
. (6)

In the case where one of the scalings fits a certain fraction of the profiles, the curves exhibit
a pronounced plateau. The scaling functions X (z/δt), Z(z/δt) and 4(z/δt) applied to our profiles
at the heating and the cooling plates are plotted in figure 7. The upper plots (figures 7(a) and (b))
show the diagnostic function X (z/δt). A linear fraction is completely missing except very far
from the wall where the temperature gradient asymptotically goes to zero. Very close to the
wall, the function tends to become a constant, indicating the existence of a viscous sub-layer
with a linear temperature gradient. However, even when using the smallest sensors of 125 µm in
our large-scale experiment, this layer remains unresolved. Analyzing Z(z/δt) and 4(z/δt) (see
figures 7(c)–(f)), it is possible to detect neither a logarithmic scaling as proposed for a turbulent
boundary layer [2] nor a power-law scaling over a broad region of the boundary layer. However,
the latter one seems to be the best fit that we already have for the region 0.05 < z/δt < 0.4.
Compared to our temperature measurements in the past [35], the application of the diagnostic
functions permits a more precise analysis of the data points than the simple regression function
as used in our previous work.

Summarizing the results in this section it can be stated that the variation of the aspect ratio
and the concomitant transition in the global flow structure does not affect the temperature field
close to the heating and the cooling plates. We demonstrated as well that a power law might
be the best fit for the region z < 0.4δt within the thermal boundary layer. The rms temperature
fluctuations rise linearly to a maximum that is located very close to the displacement thickness
δt of the thermal boundary layer.

We have listed a summary of the data in numerical form in table 2. The collection is
completed by local Nusselt numbers Nul,h and Nul,c that have been discussed in detail in [57].

3.2. Dynamics of coherent structures and the coupling of the boundary layers

In this subsection, we will focus particularly on two specific questions that are closely related
to the dynamics of coherent boundary layer structures.

• Is the generation of coherent structures as an instability of the convective boundary layer
rather a random or a periodic process?

• Are the boundary layers at the top and the bottom plates coupled by these coherent
structures and the large-scale circulation?

Since coherent structures are generated in a region adjacent to the thermal boundary layer,
we analyzed temperature time series at an arbitrarily chosen distance of 7δt. We computed the
autocorrelation function Cxx of the discrete time series T (z, t) with a time step τ between
subsequent temperature samples T (n) and T (n + 1). The function is defined in its normalized
form as

Cxx(m) =
1

N

N−m+1∑
n=1

T ′(n) · T ′(n + m − 1). (7)
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Figure 7. Diagnostic functions X , Z and 4 applied to the mean temperature
profiles at the heating (a,c,e) and the cooling (b,d,f) plates for aspect ratios
0 = 1.13 (blue online), 0 = 2.00 (red online), 0 = 4.00 (black online), and
0 = 7.00 (green online). In all diagrams, data sets for various aspect ratios are
shifted by +0.5 each. They are ordered from the bottom 0 = 1.13 to the top
0 = 7.00.
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Table 2. Results of the variable aspect ratio measurement series, where 0 and Ra
are the aspect ratio and the Rayleigh number, qh and qc denote the dimensional
heat flux at the center of the heating and the cooling plates and Nul,h and Nul,c

are the corresponding Nusselt numbers [57], and δt,c and δt,h are the displacement
thicknesses of the thermal boundary layers.

0 Ra qh (Wm−2) qc (Wm−2) Nul,h Nul,c δt,h/H δt,c/H

1.13 5.20 × 1010 9.3 8.1 901 780 0.002 18 0.001 79
1.25 5.18 × 1010 12.0 11.9 924 841 0.002 02 0.002 20
1.50 5.25 × 1010 22, 5 23.6 995 938 0.002 62 0.002 24
1.75 5, 26 × 1010 36.7 42.7 1057 1033 0.002 53 0.002 41
2.00 5, 26 × 1010 55.7 66.8 1098 1082 0.002 54 0.002 55
2.25 5, 20 × 1010 79.7 98.9 1131 1126 0.002 79 0.002 60
2.50 5, 19 × 1010 114.5 139.2 1178 1158 0.002 89 0.002 84
2.75 5, 20 × 1010 162.8 189.9 1247 1177 0.002 97 0.002 89
2.75 4.00 × 109 7.5 10.3 763 878 0.004 61 0.004 69
3.00 3.90 × 109 8.5 15.0 718 907 0.004 74 0.004 62
4.00 3.95 × 109 28.6 40.0 931 1063 0.005 14 0.005 24
5.00 3.85 × 109 64.4 80.4 1064 1133 0.005 60 0.005 35
6.00 3.86 × 109 126.0 139.1 1160 1234 0.005 60 0.005 57
7.01 3.79 × 109 245.9 249.9 1318 1318 0.005 87 0.006 15
9.00 1.31 × 109 151.0 152.7 1174 1276 0.007 73 0.007 88

In this equation, T ′(n) = T (n) − T̄ represents the zero-mean temperature fluctuations
measured at the (cold) top and the (hot) bottom plates. In figures 8(a)–(d), the autocorrelation
function is plotted for a selection of aspect ratios between 0 = 1.13 and 7.00.

At 0 = 1.13 (see figure 8(a)), Cxx(τ ) rapidly decrease to zero, indicating that temperature
fluctuations occur randomly and coherent structures do not evolve in a periodic manner.
This is a confirmation of previous measurements in cells of this geometry by Xi et al [47]
and du Puits et al [20] and contradicts the model of Villermaux. This observation holds as
well for the highest aspect ratio 0 = 7.00 as shown in figure 8(d). At aspect ratio 0 = 2.00
(figure 8(b)) periodic oscillations are significant in the temperature signals at both plates. The
typical cycle time is 1τ = 180 s, but both signals are correlated over a much longer period
of more than 1.500 s. In order to compare the correlations with the large-scale dynamics of
the flow, we estimate the typical eddy turnover time te using velocity data from previous
measurements [36]. With a typical wind velocity of v = 0.35 m s−1 at Ra = 5.2 × 1010 and
0 = 2.00, we obtain te = (2D + 2H)/v = (2 × 7.15 m + 2 × 3.58 m)/0.35 m s−1

= 61.3 s at a
rectangular path along the side walls. The correlation time 1τ = 180 s is three times longer
than te indicating that coherent structures emerging from the boundary layers may not be the
trigger of these temperature oscillations. We associate the observed oscillations with a decay
of the single-roll flow mode at aspect ratio 0 = 1.13 into a mode with at least two convection
rolls at aspect ratio 0 = 2.00 (see the inset of figure 8(b)). Over time, the location of the rolls
with reference to the cell axis varies with the result that a hot fluid from the bottom plate or a
cold fluid from the top plate alternatively hit the temperature sensor, generating the observed
periodic oscillations. Increasing the aspect ratio again to 0 = 4.00 (see figure 8(c)) the type of
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Figure 8. Autocorrelation function Cxx(τ ) of the temperature time series T (z, t)
at a relative distance z/δt ≈ 7 from the heating plate (full line, red online)
and the cooling plate (dotted line, blue online) for various aspect ratios; (a)
0 = 1.13 and Ra = 5.2 × 1010, (b) 0 = 2.00 and Ra = 5.3 × 1010, (c) 0 = 4.00
and Ra = 3.9 × 109 and (d) 0 = 7.00 and Ra = 3.8 × 109. The insets in (a) and
(b) show hypothetical sketches of the global flow structure for the respective
aspect ratio.

correlation changes again. The periodic oscillations in the autocorrelation function vanish and
only a short-term correlation with a delay time 1τ = 75 s survives. Assuming that at higher
aspect ratios, convection rolls with a typical diameter of the plate distance H = 1.79 m and a
typical velocity of v = 0.189 m s−1 establish [36], the eddy turnover time amounts to te = 29.7
for this specific case. This is still much shorter than the correlation time and a similar mechanism
as in the 0 = 2.00 cell may act. Summarizing at this point, we conclude that in RB cells
of a cylindrical shape at Pr = 0.7 and a sufficiently high Ra number coherent structures are
randomly generated. The observed periodicity in the temperature time signals at aspect ratios
26 0 6 4 is rather due to the relative motion of the large-scale structures with reference to the
location of the sensor.

Simultaneous temperature measurements at the center of the heating and the cooling plates
also permit studying the coupling of the boundary layers by coherent structures or the large-
scale circulation. From a physical point of view, two possible scenarios may exist: (i) coherent
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structures such as thermal plumes having been generated close to one of the plates travel along
with the large-scale circulation and arrive at the opposite plate. Here, they induce an instability
of the boundary layer, a new coherent structure develops and the process repeats. We refer to this
scenario as coupled boundary layers. (ii) Coherent structures emerging from one of the boundary
layers are fully mixed in the bulk region and never attain the opposite plate that decouples the
boundary layers. We are particularly focusing on how this depends on the plate distance and
aspect ratio, respectively. To this end, we computed the normalized cross-correlation function
of simultaneously measured time series at the heating and the cooling plates defined as

Cxy(m) =
1

N

N−m+1∑
n=1

T ′(n) · T ′′(n + m − 1), (8)

where T ′ and T ′′ denote the zero-mean temperature fluctuations at the bottom and at the top
plate, respectively.

The upper line charts in each of the four sub-frames in figure 9 represent the cross-
correlation of the temperature time signals at the specific distance z = 150 mm or z/δt ≈ 10
from the heating and the cooling plates, respectively. They show whether or not temperature
fluctuations appearing in the vicinity of the bottom boundary layer are measurable at the same
position with reference to the top boundary layer and vice versa. Furthermore, they give an idea
of the time delay between the signals. Basically, as shown in the figures we found three different
types of correlation between the temperature signals in the domain of 0 and Ra investigated
here. The first one is that the signals are completely uncorrelated (as can be seen in figure 9(a) for
0 = 1.13, Ra = 5.2 × 1010). The second type of correlation exhibits periodic oscillations with a
long cycle time with reference to the eddy turnover time. These oscillations hold over a very long
period virtually as long as the full measurement time at each of the positions (see figure 9(b),
0 = 2.00, Ra = 5.3 × 1010). Finally, a third type has been found that is characterized by one
single peak and with a short delay time (see figures 9(c) and (d), 0 = 4.00, Ra = 3.9 × 109 and
0 = 7.00, Ra = 3.8 × 109). In the following, we will discuss these observations and we will try
to associate them with certain flow scenarios within the convection sample. However, it has to
be noted at this point that a substantiated discussion on this topic would require a measurement
of the entire 3D velocity field inside the RB cell, which is not possible in our experiment at the
moment.

In the case of aspect ratio 0 = 1.13, the cross-correlation function Cxy tends to zero for
all τ . The signals are uncorrelated and coherent structures do not survive on the way from
one plate to the other. At 0 = 2.00, strong periodic correlations similar to the autocorrelation
function are visible. The cycle time amounts to 1τ = 180 s, which is three times longer than the
eddy turnover time. They are in accordance with the period obtained from the autocorrelation
function Cxx of the signal. As already discussed before, this correlation is caused by the relative
motion of large-scale structures with respect to the location of the sensors and is not due to a
coupling of the boundary layers by small coherent structures. While the temperature fluctuations
at the heating and the cooling plates are in phase for aspect ratios between 0 = 2 and 4, they
get out of phase decreasing the plate distance again. The delay time amounts to 1τ = 6.5 s for
0 = 7.00 (H = 0.90 m) and Ra = 3.79 × 109. Assuming that convection rolls with a diameter of
the order of the plate distance fill the space between the horizontal plates, the typical path length
of a small coherent structure from one plate to the other is l = π H/2 = π0.90 m/2 = 1.41 m.
With a typical velocity of v = 0.189 m s−1 [36], the time required for a specific event to reach
the opposite plate amounts to t = l/v = 1.4 m/0.189 m s−1

= 7.4 s. This is very close to the
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Figure 9. The cross-correlation function Cxy(τ ) of the simultaneously measured
temperature time series T (z, t) at the heating and the cooling plates for various
aspect ratios: (a) 0 = 1.13 and Ra = 5.2 × 1010, (b) 0 = 2.00 and Ra = 5.3 ×

1010, (c) 0 = 4.00 and Ra = 3.9 × 109 and (d) 0 = 7.00 and Ra = 3.8 × 109.
The upper line chart of each sub-frame shows the correlation at the maximum
distance zmax = 150 mm between the sensor and the plate. The lower graph
shows Cxy(τ, z/δt). Each of the lines represents the color-coded cross-correlation
function at one specific distance z/δt.
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correlation time and indicates that with increasing the aspect ratio the boundary layers become
coupled.

Finally, we wanted to check how deep into the boundary layer these correlations can be
detected. To this end, we plot a composition of the cross-correlation at all 35 measurement
positions z in the lower diagram of each sub-frame of figures 9(a)–(d). One horizontal color-
coded bar in the graph represents the cross-correlation function Cxy(τ ) at the specific position
z/δt. The upper bar corresponds to the correlation of the sensor signals at the maximum distance
z = 150 mm from both horizontal plates and represents the same data as shown in the line plot.
The lower bar shows the correlation of the sensor signals if both temperature probes are located
at their minimum distance from the surface of the plates. It is interesting to note that for all
parameters of 0 and Ra, correlations outside the boundary layers at z/δt ≈ 10 can be recovered
very deeply inside the boundary layer at positions z/δt < 0.05. These correlations are very
pronounced. At the edge of the boundary layer at z/δt ≈ 1 the correlation diminishes, probably
due to the high level of stochastic plume activity and the resulting temperature fluctuations
interfering the signal with noise.

4. Conclusions

Stimulated by the variety of predictions and experimental observations for the temperature field
close to the horizontal plates currently existing, and since data for higher aspect ratios are
still missing, we were running a new set of temperature measurements in our large-scale RB
facility at Pr = 0.7. Extending our previous work [35], we made simultaneous measurements
inside and outside the boundary layers of both plates using a redesigned temperature sensor. In
particular, we focused in our new experiments on the variation of the aspect ratio keeping the
Rayleigh number constant. The experiments covered aspect ratios between 0 = 1.13 and 2.75
as well as between 0 = 2.75 and 7.00 at Rayleigh numbers Ra = 5.2 × 1010 and 3.9 × 109,
respectively. In order to enhance the aspect ratio domain an additional experiment at 0 = 9.00
and Ra = 1.3 × 109 has been carried out but the results qualitatively equal the case of 0 = 7.00.

The main result of our work is that the mean temperature field close to the horizontal
plates is virtually not affected by the variation of the aspect ratio and, undoubtedly, the
associated transitions in the global flow structure. However, both the total and the normalized
boundary-layer thickness δt and δt/H vary with the aspect ratio, indicating that the Nusselt
number depends on this quantity as well. Our refined measurements at both plates along with
a quantitative analysis using specific diagnostic functions also show that none of the measured
mean temperature profiles includes a significant and long fraction of a linear, logarithmic or
power-law dependence with respect to the plate distance. The power law still might be the best
fitting function for a limited region 0.05 < z/δt < 0.4.

Our simultaneously carried out measurements at various distances from both horizontal
plates permit us to analyze the dynamics of the evolution of coherent structures in the vicinity
of the horizontal plates and the coupling of the boundary layers by these structures. Applying
the autocorrelation function to the measured temperature time series, it could be shown that in
gases with Pr = 0.7 and in the high Rayleigh number regime, plumes are emitted randomly
and continuously at all aspect ratios investigated in this work. Periodic oscillations in the
temperature signal between 0 = 2 and 4 obey a cycle time much larger than the typical eddy
turnover time. A possible explanation might be that they are induced as the convection rolls
change their position with reference to the cell axis. We demonstrated as well that the boundary
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layers are decoupled for aspect ratios 0 6 2.00. For higher aspect ratios 0 > 4 they become
coupled by small coherent structures evolving close to the plates. Correlations between the
temperature fields at the heating and the cooling plates can be evaluated very deeply inside the
boundary layer at positions as close as z/δt = 0.05 to the plate surface.

Acknowledgments

We acknowledge financial support from the Deutsche Forschungsgemeinschaft under grant
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