154 research outputs found

    (Quantum) Space-Time as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces

    Get PDF
    We develop a kind of pregeometry consisting of a web of overlapping fuzzy lumps which interact with each other. The individual lumps are understood as certain closely entangled subgraphs (cliques) in a dynamically evolving network which, in a certain approximation, can be visualized as a time-dependent random graph. This strand of ideas is merged with another one, deriving from ideas, developed some time ago by Menger et al, that is, the concept of probabilistic- or random metric spaces, representing a natural extension of the metrical continuum into a more microscopic regime. It is our general goal to find a better adapted geometric environment for the description of microphysics. In this sense one may it also view as a dynamical randomisation of the causal-set framework developed by e.g. Sorkin et al. In doing this we incorporate, as a perhaps new aspect, various concepts from fuzzy set theory.Comment: 25 pages, Latex, no figures, some references added, some minor changes added relating to previous wor

    (Quantum) Space-Time as a Statistical Geometry of Lumps in Random Networks

    Full text link
    In the following we undertake to describe how macroscopic space-time (or rather, a microscopic protoform of it) is supposed to emerge as a superstructure of a web of lumps in a stochastic discrete network structure. As in preceding work (mentioned below), our analysis is based on the working philosophy that both physics and the corresponding mathematics have to be genuinely discrete on the primordial (Planck scale) level. This strategy is concretely implemented in the form of \tit{cellular networks} and \tit{random graphs}. One of our main themes is the development of the concept of \tit{physical (proto)points} or \tit{lumps} as densely entangled subcomplexes of the network and their respective web, establishing something like \tit{(proto)causality}. It may perhaps be said that certain parts of our programme are realisations of some early ideas of Menger and more recent ones sketched by Smolin a couple of years ago. We briefly indicate how this \tit{two-story-concept} of \tit{quantum} space-time can be used to encode the (at least in our view) existing non-local aspects of quantum theory without violating macroscopic space-time causality.Comment: 35 pages, Latex, under consideration by CQ

    Insights into the room temperature magnetism of ZnO/Co3O4 mixtures

    Get PDF
    The origin of room temperature (RT) ferromagneticlike behavior in ZnO-based diluted magnetic semiconductors is still an unclear topic. The present work concentrates on the appearance of RT magnetic moments in just mixed ZnO/Co3O4 mixtures without thermal treatment. In this study, it is shown that the magnetism seems to be related to surface reduction of the Co3O4 nanoparticles, in which, an antiferromagnetic Co3O4 nanoparticle (core) is surrounded by a CoO-like shell. This singular superficial magnetism has also been found in other mixtures with semiconductors such as TiO2 and insulators such as Al2O3

    Slow decay of dynamical correlation functions for nonequilibrium quantum states

    Full text link
    A property of dynamical correlation functions for nonequilibrium states is discussed. We consider arbitrary dimensional quantum spin systems with local interaction and translationally invariant states with nonvanishing current over them. A correlation function between local charge and local Hamiltonian at different spacetime points is shown to exhibit slow decay.Comment: typos correcte

    Planck Fluctuations, Measurement Uncertainties and the Holographic Principle

    Full text link
    Starting from a critical analysis of recently reported surprisingly large uncertainties in length and position measurements deduced within the framework of quantum gravity, we embark on an investigation both of the correlation structure of Planck scale fluctuations and the role the holographic hypothesis is possibly playing in this context. While we prove the logical independence of the fluctuation results and the holographic hypothesis (in contrast to some recent statements in that direction) we show that by combining these two topics one can draw quite strong and interesting conclusions about the fluctuation structure and the microscopic dynamics on the Planck scale. We further argue that these findings point to a possibly new and generalized form of quantum statistical mechanics of strongly (anti)correlated systems of degrees of freedom in this fundamental regime.Comment: 19 pages, Latex, no figures, some new references, to appear ModPhysLett

    Proper time and Minkowski structure on causal graphs

    Get PDF
    For causal graphs we propose a definition of proper time which for small scales is based on the concept of volume, while for large scales the usual definition of length is applied. The scale where the change from "volume" to "length" occurs is related to the size of a dynamical clock and defines a natural cut-off for this type of clock. By changing the cut-off volume we may probe the geometry of the causal graph on different scales and therey define a continuum limit. This provides an alternative to the standard coarse graining procedures. For regular causal lattice (like e.g. the 2-dim. light-cone lattice) this concept can be proven to lead to a Minkowski structure. An illustrative example of this approach is provided by the breather solutions of the Sine-Gordon model on a 2-dimensional light-cone lattice.Comment: 15 pages, 4 figure

    Разработка методов тепловой дефектоскопии и дефектометрии авиационных композитов

    Get PDF
    Диссертация посвящена разработке методов дефектометрии в рамках импульсного теплового контроля авиационных композитов. Проведён сравнительный анализ существующих термографических методов количественной оценки глубины дефектов. Выявлены их преимущества и недостатки и обозначены существующие проблемы в этой сфере. Представлен термографический метод количественной оценки глубины дефектов в материалах, обладающих свойством оптической полупрозрачности. Разработан метод количественной оценки глубины дефектов, характеризующихся малым отношением поперечных размеров к глубине. Разработан метод оценки толщины тонких покрытий основанный на пороговой отсечке кажущейся тепловой инерции.This study is focused on quantitative estimation of defect depth by applying pulsed thermal nondestructive testing. A novel method for estimating defect depth is proposed by taking into account the phenomenon of 3D heat diffusion finite lateral size of defects and thermal reflection coefficient at the boundary between a host material and defects. The method is based on the combination of a known analytical model and non-linear fitting (NLF) procedure. The apparent effusivity method for the quantitative evaluation of coating thickness in a one-sided thermal NDT procedure is presented. And the depth prediction method based on neural networks is presented

    Relational interpretation of the wave function and a possible way around Bell's theorem

    Full text link
    The famous ``spooky action at a distance'' in the EPR-szenario is shown to be a local interaction, once entanglement is interpreted as a kind of ``nearest neighbor'' relation among quantum systems. Furthermore, the wave function itself is interpreted as encoding the ``nearest neighbor'' relations between a quantum system and spatial points. This interpretation becomes natural, if we view space and distance in terms of relations among spatial points. Therefore, ``position'' becomes a purely relational concept. This relational picture leads to a new perspective onto the quantum mechanical formalism, where many of the ``weird'' aspects, like the particle-wave duality, the non-locality of entanglement, or the ``mystery'' of the double-slit experiment, disappear. Furthermore, this picture cirumvents the restrictions set by Bell's inequalities, i.e., a possible (realistic) hidden variable theory based on these concepts can be local and at the same time reproduce the results of quantum mechanics.Comment: Accepted for publication in "International Journal of Theoretical Physics

    X-Tream: a novel dosimetry system for Synchrotron Microbeam Radiation Therapy

    Get PDF
    Microbeam Radiation Therapy (MRT) is a radiation treatment technique under development for inoperable brain tumors. MRT is based on the use of a synchrotron generated X-ray beam with an extremely high dose rate ( ~ 20 kGy/sec), striated into an array of X-ray micro-blades. In order to advance to clinical trials, a real-time dosimeter with excellent spatial resolution must be developed for absolute dosimetry. The design of a real-time dosimeter for such a radiation scenario represents a significant challenge due to the high photon flux and vertically striated radiation field, leading to very steep lateral dose gradients. This article analyses the striated radiation field in the context of the requirements for temporal dosimetric measurements and presents the architecture of a new dosimetry system based on the use of silicon detectors and fast data acquisition electronic interface. The combined system demonstrates micrometer spatial resolution and microsecond real time readout with accurate sensitivity and linearity over five orders of magnitude of input signal. The system will therefore be suitable patient treatment plan verification and may also be expanded for in-vivo beam monitoring for patient safety during the treatment
    corecore