528 research outputs found
Vector coherent state theory of the generic representations of so(5) in an so(3) basis
For applications of group theory in quantum mechanics, one generally needs
explicit matrix representations of the spectrum generating algebras that arise
in bases that reduce the symmetry group of some Hamiltonian of interest. Here
we use vector coherent state techniques to develop an algorithm for
constructing the matrices for arbitrary finite-dimensional irreps of the SO(5)
Lie algebra in an SO(3) basis. The SO(3) subgroup of SO(5) is defined by
regarding SO(5) as linear transformations of the five-dimensional space of an
SO(3) irrep of angular momentum two. A need for such irreps arises in the
nuclear collective model of quadrupole vibrations and rotations. The algorithm
has been implemented in MAPLE, and some tables of results are presented.Comment: 20 pages, uses multirow.sty, submitted to J. Math. Phy
Early cadmium-induced effects on reactive oxygen species production, cell viability and membrane electrical potential in grapevine roots
Cadmium (Cd) is one of the most worldwide concerned metal pollutants. It is able to induce reactive oxygen species production through indirect mechanisms causing oxidative stress. Vitis vinifera roots were treated with 100 μM Cd for 0-180 min or 20-100 μM Cd for 24 h. Fluorescence confocal microscopy showed elevated hydrogen peroxide and superoxide levels in the apical root segments. Two phases (after 30 min and 24 h) of the superoxide raised levels were observed. This was accompanied by the decrease in root cell viability. Cd in concentrations between 0.005-10 mM induced significant, but different changes in membrane electrical potential (EM) of the root epidermal cells. The low concentrations of Cd (0.005-0.01 mM) caused transient EM hyperpolarization followed by depolarization, whereas by higher concentrations (0.05-5.0 mM) EM was depolarized. In any case, the depolarization or hyperpolarization were only transient up to 5 mM Cd concentration indicating that the plasma membrane function was not irreversibly destroyed. Hyperpolarization of EM induced by fusicoccin (FC) was completely suppressed only in the presence of 10 mM Cd pointing to the inhibition of H+-ATPase. The results suggest that the Cd interactions, depending on cellular development, result in activation of a complex of various mechanisms such as peroxide and hydrogen peroxide production, which in turn may be a more probable reason for the root cell responses to Cd toxicity than the transient EM changes
Enantioselective Synthesis of Tryptophan Derivatives by a Tandem Friedel–Crafts Conjugate Addition/Asymmetric Protonation Reaction
The tandem Friedel–Crafts conjugate addition/asymmetric protonation reaction between 2-substituted indoles and methyl 2-acetamidoacrylate is reported. The reaction is catalyzed by (R)-3,3′-dibromo-BINOL in the presence of stoichiometric SnCl_4, and is the first example of a tandem conjugate addition/asymmetric protonation reaction using a BINOL·SnCl_4 complex as the catalyst. A range of indoles furnished synthetic tryptophan derivatives in good yields and high levels of enantioselectivity, even on a preparative scale. The convergent nature of this transformation should lend itself to the preparation of unnatural tryptophan derivatives for use in a broad array of synthetic and biological applications
Dissimilar responses of membrane potential (EM), permeability properties and respiration to cadmium and nickel in maize root cells
The short-term treatment with Cd2+ and Ni2+ triggered transient depolarization of transplasma membrane potential (EM) in the outer cortical root cells of two maize cultivars (cv. Premia and cv. Blitz), however, both metals changed the EM in a quantitatively different way. The magnitude and duration of EM depolarization were concentration dependent and were greater in the metal susceptible cv. Blitz. The highest EM depolarization was recorded with simultaneous application of Cd2+ + Ni2+ in both maize cultivars. The EM depolarization induced by Cd2+ or Cd2+ + Ni2+ but not Ni2+ alone was accompanied with a tremendous increase of membrane conductivity, but it was not accompanied with the effect of heavy metals (HM) on respiration. Simultaneous application of fusiccocin (FC) with Cd2+ or Cd2+ + Ni2+ during the EM depolarization, inability of FC to stop the depolarization by FC-enhanced proton extrusion and rapid restoration of EM, suggested a transient inhibition of the plasma membrane H+-ATPase by these toxic metals. Our data support the opinion that differences in the effects of the studied ions were not the result of their direct action on PM, but rather of their different influence on intracellular processes within root cells
Hot melt extrusion processing parameters optimization
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. The aim of this study was to demonstrate the impact of processing parameters of the hot-melt extrusion (HME) on the pharmaceutical formulation properties. Carbamazepine (CBZ) was selected as a model water-insoluble drug. It was incorporated into Soluplus®, which was used as the polymeric carrier, to produce a solid dispersion model system. The following HME-independent parameters were investigated at different levels: extrusion temperature, screw speed and screw configuration. Design of experiment (DOE) concept was applied to find the most significant factor with minimum numbers of experimental runs. A full two-level factorial design was applied to assess the main effects, parameter interactions and total error. The extrudates’ CBZ content and the in vitro dissolution rate were selected as response variables. Material properties, including melting point, glass transition, and thermal stability, and polymorphs changes were used to set the processing range. In addition, the extruder torque and pressure were used to find the simplest DOE model. Each change of the parameter showed a unique pattern of dissolution profile, indicating that processing parameters have an influence on formulation properties. A simple, novel and two-level factorial design was able to evaluate each parameter effect and find the optimized formulation. Screw configuration and extrusion temperature were the most affecting parameters in this study
Synthesis and Biological Evaluation of Pyrroloindolines as Positive Allosteric Modulators of the α1β2γ2 GABA_A Receptor
Îł-Aminobutyric acid type A (GABA_A) receptors are key mediators of central inhibitory neurotransmission and have been implicated in several disorders of the central nervous system. Some positive allosteric modulators (PAMs) of this receptor provide great therapeutic benefits to patients. However, adverse effects remain a challenge. Selective targeting of GABA_A receptors could mitigate this problem. Here, we describe the synthesis and functional evaluation of a novel series of pyrroloin-dolines that display significant modulation of the GABA_A receptor, acting as PAMs. We found that halogen incorporation at the C5 position greatly increased the PAM potency relative to the parent ligand, while substitutions at other positions generally decreased potency. Mutagenesis studies suggest that the binding site lies at the top of the transmembrane domain
Synthesis and Biological Evaluation of Pyrroloindolines as Positive Allosteric Modulators of the α1β2γ2 GABA_A Receptor
Îł-Aminobutyric acid type A (GABA_A) receptors are key mediators of central inhibitory neurotransmission and have been implicated in several disorders of the central nervous system. Some positive allosteric modulators (PAMs) of this receptor provide great therapeutic benefits to patients. However, adverse effects remain a challenge. Selective targeting of GABA_A receptors could mitigate this problem. Here, we describe the synthesis and functional evaluation of a novel series of pyrroloin-dolines that display significant modulation of the GABA_A receptor, acting as PAMs. We found that halogen incorporation at the C5 position greatly increased the PAM potency relative to the parent ligand, while substitutions at other positions generally decreased potency. Mutagenesis studies suggest that the binding site lies at the top of the transmembrane domain
- …