9 research outputs found

    E-Cigarette Exposure Decreases Bone Marrow Hematopoietic Progenitor Cells.

    No full text
    Electronic cigarettes (E-cigs) generate nicotine containing aerosols for inhalation and have emerged as a popular tobacco product among adolescents and young adults, yet little is known about their health effects due to their relatively recent introduction. Few studies have assessed the long-term effects of inhaling E-cigarette smoke or vapor. Here, we show that two months of E-cigarette exposure causes suppression of bone marrow hematopoietic stem and progenitor cells (HSPCs). Specifically, the common myeloid progenitors and granulocyte-macrophage progenitors were decreased in E-cig exposed animals compared to air exposed mice. Competitive reconstitution in bone marrow transplants was not affected by two months of E-cig exposure. When air and E-cig exposed mice were challenged with an inflammatory stimulus using lipopolysaccharide (LPS), competitive fitness between the two groups was not significantly different. However, mice transplanted with bone marrow from E-cigarette plus LPS exposed mice had elevated monocytes in their peripheral blood at five months post-transplant indicating a myeloid bias similar to responses of aged hematopoietic stem cells (HSC) to an acute inflammatory challenge. We also investigated whether E-cigarette exposure enhances the selective advantage of hematopoietic cells with myeloid malignancy associated mutations. E-cigarette exposure for one month slightly increased JAK2V617F mutant cells in peripheral blood but did not have an impact on TET2-/- cells. Altogether, our findings reveal that chronic E-cigarette exposure for two months alters the bone marrow HSPC populations but does not affect HSC reconstitution in primary transplants

    Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS

    No full text
    Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now report a rapid, highly reproducible method to convert adult human fibroblasts from living ALS patients to induced neuronal progenitor cells and subsequent differentiation into astrocytes (i-astrocytes). Non-cell autonomous toxicity to motor neurons is found following coculture of i-astrocytes from familial ALS patients with mutation in superoxide dismutase or hexanucleotide expansion in C9orf72 (ORF 72 on chromosome 9) the two most frequent causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients are as toxic as those with causative mutations, suggesting a common mechanism. Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity

    Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study.

    No full text
    OBJECTIVE: This study prospectively assessed putative promising biomarkers for use in assessing infants with spinal muscular atrophy (SMA). METHODS: This prospective, multi-center natural history study targeted the enrollment of SMA infants and healthy control infants less than 6 months of age. Recruitment occurred at 14 centers within the NINDS National Network for Excellence in Neuroscience Clinical Trials (NeuroNEXT) Network. Infant motor function scales and putative electrophysiological, protein and molecular biomarkers were assessed at baseline and subsequent visits. RESULTS: Enrollment began November, 2012 and ended September, 2014 with 26 SMA infants and 27 healthy infants enrolled. Baseline demographic characteristics of the SMA and control infant cohorts aligned well. Motor function as assessed by the Test for Infant Motor Performance Items (TIMPSI) and the Childrens Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) revealed significant differences between the SMA and control infants at baseline. Ulnar compound muscle action potential amplitude (CMAP) in SMA infants (1.4 ± 2.2 mV) was significantly reduced compared to controls (5.5 ± 2.0 mV). Electrical impedance myography (EIM) high-frequency reactance slope (Ohms/MHz) was significantly higher in SMA infants than controls SMA infants had lower survival motor neuron (SMN) mRNA levels in blood than controls, and several serum protein analytes were altered between cohorts. INTERPRETATION: By the time infants were recruited and presented for the baseline visit, SMA infants had reduced motor function compared to controls. Ulnar CMAP, EIM, blood SMN mRNA levels, and serum protein analytes were able to distinguish between cohorts at the enrollment visit

    Natural history of infantile‐onset spinal muscular atrophy

    No full text
    OBJECTIVE: Infantile-onset spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality, typically resulting in death preceding age 2. Clinical trials in this population require an understanding of disease progression and identification of meaningful biomarkers to hasten therapeutic development and predict outcomes. METHODS: A longitudinal, multicenter, prospective natural history study enrolled 26 SMA infants and 27 control infants aged <6 months. Recruitment occurred at 14 centers over 21 months within the NINDS-sponsored NeuroNEXT (National Network for Excellence in Neuroscience Clinical Trials) Network. Infant motor function scales (Test of Infant Motor Performance Screening Items [TIMPSI], The Childrens Hospital of Philadelphia Infant Test for Neuromuscular Disorders, and Alberta Infant Motor Score) and putative physiological and molecular biomarkers were assessed preceding age 6 months and at 6, 9, 12, 18, and 24 months with progression, correlations between motor function and biomarkers, and hazard ratios analyzed. RESULTS: Motor function scores (MFS) and compound muscle action potential (CMAP) decreased rapidly in SMA infants, whereas MFS in all healthy infants rapidly increased. Correlations were identified between TIMPSI and CMAP in SMA infants. TIMPSI at first study visit was associated with risk of combined endpoint of death or permanent invasive ventilation in SMA infants. Post-hoc analysis of survival to combined endpoint in SMA infants with 2 copies of SMN2 indicated a median age of 8 months at death (95% confidence interval, 6, 17). INTERPRETATION: These data of SMA and control outcome measures delineates meaningful change in clinical trials in infantile-onset SMA. The power and utility of NeuroNEXT to provide real-world, prospective natural history data sets to accelerate public and private drug development programs for rare disease is demonstrated. Ann Neurol 2017;82:883-891

    Baseline results of the Neuro NEXT

    No full text
    OBJECTIVE: This study prospectively assessed putative promising biomarkers for use in assessing infants with spinal muscular atrophy (SMA). METHODS: This prospective, multi‐center natural history study targeted the enrollment of SMA infants and healthy control infants less than 6 months of age. Recruitment occurred at 14 centers within the NINDS National Network for Excellence in Neuroscience Clinical Trials (NeuroNEXT) Network. Infant motor function scales and putative electrophysiological, protein and molecular biomarkers were assessed at baseline and subsequent visits. RESULTS: Enrollment began November, 2012 and ended September, 2014 with 26 SMA infants and 27 healthy infants enrolled. Baseline demographic characteristics of the SMA and control infant cohorts aligned well. Motor function as assessed by the Test for Infant Motor Performance Items (TIMPSI) and the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP‐INTEND) revealed significant differences between the SMA and control infants at baseline. Ulnar compound muscle action potential amplitude (CMAP) in SMA infants (1.4 ± 2.2 mV) was significantly reduced compared to controls (5.5 ± 2.0 mV). Electrical impedance myography (EIM) high‐frequency reactance slope (Ohms/MHz) was significantly higher in SMA infants than controls SMA infants had lower survival motor neuron (SMN) mRNA levels in blood than controls, and several serum protein analytes were altered between cohorts. INTERPRETATION: By the time infants were recruited and presented for the baseline visit, SMA infants had reduced motor function compared to controls. Ulnar CMAP, EIM, blood SMN mRNA levels, and serum protein analytes were able to distinguish between cohorts at the enrollment visit
    corecore