74 research outputs found

    Neuroimaging Studies of Suicidal Behavior and Non-suicidal Self-Injury in Psychiatric Patients: A Systematic Review

    Get PDF
    Background: With around 800,000 people taking their own lives every year, suicide is a growing health concern. Understanding the factors that underlie suicidality and identifying specific variables associated with increased risk is paramount for increasing our understanding of suicide etiology. Neuroimaging methods that enable the investigation of structural and functional brain markers in vivo are a promising tool in suicide research. Although a number of studies in clinical samples have been published to date, evidence about neuroimaging correlates for suicidality remains controversial.Objective: Patients with mental disorders have an increased risk for both suicidal behavior and non-suicidal self-injury. This manuscript aims to present an up-to-date overview of the literature on potential neuroimaging markers associated with SB and NSSI in clinical samples. We sought to identify consistently reported structural changes associated with suicidal symptoms within and across psychiatric disorders.Methods: A systematic literature search across four databases was performed to identify all English-language neuroimaging articles involving patients with at least one psychiatric diagnosis and at least one variable assessing SB or NSSI. We evaluated and screened evidence in these articles against a set of inclusion/exclusion criteria and categorized them by disease, adhering to the PRISMA guidelines.Results: Thirty-three original scientific articles investigating neuroimaging correlates of SB in psychiatric samples were found, but no single article focusing on NSSI alone. Associations between suicidality and regions in frontal and temporal cortex were reported by 15 and 9 studies across four disorders, respectively. Furthermore, differences in hippocampus were reported by four studies across three disorders. However, we found a significant lack of replicability (consistency in size and direction) of results across studies.Conclusions: Our systematic review revealed a lack of neuroimaging studies focusing on NSSI in clinical samples. We highlight several potential sources of bias in published studies, and conclude that future studies should implement more rigorous study designs to minimize bias risk. Despite several studies reporting associations between SB and anatomical differences in the frontal cortex, there was a lack of consistency across them. We conclude that better-powered samples, standardized neuroimaging and analytical protocols are needed to continue advancing knowledge in this field

    Systematic Review: microRNAs as Potential Biomarkers in Mild Cognitive Impairment Diagnosis

    Get PDF
    The rate of progression from Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) is estimated at >10% per year, reaching up to 80–90% after 6 years. MCI is considered an indicator of early-stage AD. In this context, the diagnostic screening of MCI is crucial for detecting individuals at high risk of AD before they progress and manifest further severe symptoms. Typically, MCI has been determined using neuropsychological assessment tools such as the Montreal Cognitive Assessment (MoCA) or Mini-Mental Status Examination (MMSE). Unfortunately, other diagnostic methods are not available or are unable to identify MCI in its early stages. Therefore, identifying new biomarkers for MCI diagnosis and prognosis is a significant challenge. In this framework, miRNAs in serum, plasma, and other body fluids have emerged as a promising source of biomarkers for MCI and AD-related cognitive impairments. Interestingly, miRNAs can regulate several signaling pathways via multiple and diverse targets in response to pathophysiological stimuli. This systematic review aims to describe the current state of the art regarding AD-related target genes modulated by differentially expressed miRNAs in peripheral fluids samples in MCI subjects to identify potential miRNA biomarkers in the early stages of AD. We found 30 articles that described five miRNA expression profiles from peripheral fluid in MCI subjects, showing possible candidates for miRNA biomarkers that may be followed up as fluid biomarkers or therapeutic targets of early-stage AD. However, additional research is needed to validate these miRNAs and characterize the precise neuropathological mechanisms.Fil: Ogonowski, Natalia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; Argentina. Universidad Adolfo Ibañez; ChileFil: Salcidua, Stefanny. Universidad Adolfo Ibañez; ChileFil: Leon, Tomas. Universidad de Chile; Chile. Trinity College; IrlandaFil: Chamorro Veloso, Nayaret. Neurognos Spa; ChileFil: Valls, Cristian. Neurognos Spa; ChileFil: Avalos, Constanza. Universidad Adolfo Ibañez; ChileFil: Bisquertt, Alejandro. Neurognos Spa; ChileFil: Rentería, Miguel E.. Berghofer Medical Research Institute; AustraliaFil: Orellana, Paulina. Universidad Adolfo Ibañez; ChileFil: Duran Aniotz, Claudia. Universidad Adolfo Ibañez; Chil

    Novel Genetic Loci Underlying Human Intracranial Volume Identified through Genome-Wide Association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Genetic aetiology of self-harm ideation and behaviour

    Get PDF
    Family studies have identified a heritable component to self-harm that is partially independent from comorbid psychiatric disorders. However, the genetic aetiology of broad sense (non-suicidal and suicidal) self-harm has not been characterised on the molecular level. In addition, controversy exists about the degree to which suicidal and non-suicidal self-harm share a common genetic aetiology. In the present study, we conduct genome-wide association studies (GWAS) on lifetime self-harm ideation and self-harm behaviour (i.e. any lifetime self-harm act regardless of suicidal intent) using data from the UK Biobank (n > 156,000). We also perform genome wide gene-based tests and characterize the SNP heritability and genetic correlations between these traits. Finally, we test whether polygenic risk scores (PRS) for self-harm ideation and self-harm behaviour predict suicide attempt, suicide thoughts and non-suicidal self-harm (NSSH) in an independent target sample of 8,703 Australian adults. Our GWAS results identified one genome-wide significant locus associated with each of the two phenotypes. SNP heritability (h) estimates were ~10%, and both traits were highly genetically correlated (LDSC r > 0.8). Gene-based tests identified seven genes associated with self-harm ideation and four with self-harm behaviour. Furthermore, in the target sample, PRS for self-harm ideation were significantly associated with suicide thoughts and NSSH, and PRS for self-harm behaviour predicted suicide thoughts and suicide attempt. Follow up regressions identified a shared genetic aetiology between NSSH and suicide thoughts, and between suicide thoughts and suicide attempt. Evidence for shared genetic aetiology between NSSH and suicide attempt was not statistically significant

    Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci

    Get PDF
    Glaucoma, a leading cause of irreversible blindness, is a highly heritable human disease. Previous genome-wide association studies have identified over 100 loci for the most common form, primary open-angle glaucoma. Two key glaucoma-associated traits also show high heritability: intraocular pressure and optic nerve head excavation damage quantified as the vertical cup-to-disc ratio. Here, since much of glaucoma heritability remains unexplained, we conducted a large-scale multitrait genome-wide association study in participants of European ancestry combining primary open-angle glaucoma and its two associated traits (total sample size over 600,000) to substantially improve genetic discovery power (263 loci). We further increased our power by then employing a multiancestry approach, which increased the number of independent risk loci to 312, with the vast majority replicating in a large independent cohort from 23andMe, Inc. (total sample size over 2.8 million; 296 loci replicated at P < 0.05, 240 after Bonferroni correction). Leveraging multiomics datasets, we identified many potential druggable genes, including neuro-protection targets likely to act via the optic nerve, a key advance for glaucoma because all existing drugs only target intraocular pressure. We further used Mendelian randomization and genetic correlation-based approaches to identify novel links to other complex traits, including immune-related diseases such as multiple sclerosis and systemic lupus erythematosus

    A Comparative Structural Bioinformatics Analysis of the Insulin Receptor Family Ectodomain Based on Phylogenetic Information

    Get PDF
    The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
    corecore