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Genetic aetiology of self-harm 
ideation and behaviour
Adrian I. Campos1,2 ✉, Karin J. H. Verweij3, Dixie J. Statham4, Pamela A. F. Madden5, 
Dominique F. Maciejewski6, Katrina A. S. Davis7,8, Ann John9, Matthew Hotopf7,8,  
Andrew C. Heath5, Nicholas G. Martin1 & Miguel E. Rentería1,2 ✉

Family studies have identified a heritable component to self-harm that is partially independent from 
comorbid psychiatric disorders. However, the genetic aetiology of broad sense (non-suicidal and 
suicidal) self-harm has not been characterised on the molecular level. In addition, controversy exists 
about the degree to which suicidal and non-suicidal self-harm share a common genetic aetiology. In 
the present study, we conduct genome-wide association studies (GWAS) on lifetime self-harm ideation 
and self-harm behaviour (i.e. any lifetime self-harm act regardless of suicidal intent) using data from 
the UK Biobank (n > 156,000). We also perform genome wide gene-based tests and characterize the 
SNP heritability and genetic correlations between these traits. Finally, we test whether polygenic risk 
scores (PRS) for self-harm ideation and self-harm behaviour predict suicide attempt, suicide thoughts and 
non-suicidal self-harm (NSSH) in an independent target sample of 8,703 Australian adults. Our GWAS 
results identified one genome-wide significant locus associated with each of the two phenotypes. 
SNP heritability (hsnp

2) estimates were ~10%, and both traits were highly genetically correlated (LDSC 
rg > 0.8). Gene-based tests identified seven genes associated with self-harm ideation and four with 
self-harm behaviour. Furthermore, in the target sample, PRS for self-harm ideation were significantly 
associated with suicide thoughts and NSSH, and PRS for self-harm behaviour predicted suicide thoughts 
and suicide attempt. Follow up regressions identified a shared genetic aetiology between NSSH and 
suicide thoughts, and between suicide thoughts and suicide attempt. Evidence for shared genetic 
aetiology between NSSH and suicide attempt was not statistically significant.

Every year nearly one million people take their own lives1, making suicide a pressing issue of considerable 
social and economic burden. Moreover, self-harm behaviours are now recognized by the American Psychiatric 
Association as independent conditions for further study. Namely, non-suicidal self-injury and suicidal behaviour 
disorder were recently introduced in the section 3 of the Diagnostic and Statistical Manual of Mental Disorders 
(DSM-V)2. The lifetime prevalence estimate for suicide thoughts is ~10%, while suicide attempt and non-suicidal 
self-harm (NSSH) affect ~2.5 and ~5% of the population, respectively3–5. Higher rates have been reported 
amongst children and adolescents6. The key difference between suicidal and non-suicidal self-harm is that the 
former implies an intent to die as a consequence of the act. Non-suicidal self-harm acts include equally dangerous 
behaviours such as cutting, burning or poisoning, but are underlined by a different motivation such as seeking 
attention or the desire to feel pain.

Twin and family studies indicate that NSSH, suicide thoughts and suicide attempt are moderately heritable7,8. 
Multiple studies have documented that the presence of a psychiatric disorder considerably increases the risk for 
both suicidal and non-suicidal self-harm9–11 but a sizeable genetic component (33-51% of variance) of suicide 
risk is not explained by underlying psychiatric conditions12–16. Importantly, controversy exists about whether 
NSSH and suicide attempt are part of the same liability spectrum7,16–20. Notably, twin studies have identified a 
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genetic correlation between suicide thoughts and NSSH7, but the extent to which shared genetic factors underlie 
NSSH, suicide thoughts and suicide attempt (i.e. a self-harm liability continuum hypothesis) still remains elusive. 
Investigating broad sense self-harm could improve our understanding of the aetiology and underpinnings of the 
liability to both suicidal and non-suicidal self-harm.

Although several genome-wide association studies (GWAS) on suicidality have been published to date21–31, 
robustly associated genetic variants are still elusive32. A number of studies assessing the genetic predictability 
of suicidality have suggested a shared aetiology between depression and suicidality, and suggestive evidence 
for suicidality-related associations32–35. Investigating the genetic architecture of self-harm regardless of suicidal 
intent, could be valuable to gain biological insights into the relationship between self-harm and suicide. In the 
present study, we explore the genetic aetiology of lifetime self-harm ideation and lifetime self-harm behaviour 
(regardless of suicidal intent) using a GWAS and PRS approach. An overview of the phenotypes and terminology 
used throughout this manuscript is available in Table 1.

Methods
Discovery sample.  The discovery sample consisted of ~156,700 participants from the UK Biobank (as of 
February 2019) with self-harm data (lifetime history of self-harm ideation and self-harm behaviour)36. Self-harm was 
assessed as described previously37. DNA extraction and genotyping are described in ref. 38. Notably, genotyping was 
performed using two highly related arrays: the UK BiLEVE Axiom array and the UK Biobank Axion Array.

Briefly, the self-harm behaviour item was “Have you deliberately harmed yourself, whether or not you meant 
to end your life?” (No = 150,008, yes = 6,872). The self-harm ideation item was: “Have you contemplated harm-
ing yourself (for example by cutting, biting, hitting yourself or taking an overdose)?” (No = 133,524, yes = 
23,192). Notably, both these phenotypes make no distinction between suicidal and non-suicidal self-harm. As 
such, they include both suicidal and non-suicidal self-harm. A liability threshold model (tetrachoric correlation; 
psych package in R) estimated the traits to be highly correlated ρ = 0.89 (95% c.i. 0.88–0.89; N reporting both 
ideation and behaviour = 6446).

GWAS.  We conducted two GWAS, on lifetime self-harm ideation and lifetime self-harm behaviour. Association 
analyses were performed using BOLT_LMM39, based on a linear mixed model and allele dosages (of the effect 
allele based on imputed data) accounting for the first 20 genetic ancestry principal components, standard covari-
ates (age, age2, sex, sex*age as fixed effect predictors), and correcting for cryptic relatedness and population strat-
ification using a genetic relatedness matrix as the random effects variance covariance structure. Approximately 
48,000 individuals of non-European ancestry were excluded from the analyses. A stringent, but standard 
quality-control (QC) protocol40 was applied: variants with low minor allele count (MAC < 25), low quality impu-
tation (INFO < 0.8) or with a deviation from the Hardy-Weinberg equilibrium (HWEp < 1e-10) were excluded 
from further analyses.

Gene-based test analyses.  Gene-based association analysis was conducted for self-harm ideation or 
self-harm behaviour using MAGMA41 as implemented on the FUMA web platform42. Briefly, SNPs were mapped 
to ~20,000 protein coding genes based on their genomic location. Then, the independent SNP association sta-
tistics were combined to yield gene-based mean χ2 statistics. Genome-wide significance level was defined as 
2.652e-6 (Bonferroni corrected alpha <0.05).

PRS target sample.  The target sample consisted of individuals from two cohorts of the Queensland Twin 
Registry. Individuals were recruited and participated in structured telephone or paper interviews assessing psy-
chiatric disorders, substance abuse and living conditions. Detailed information on the cohorts has been published 
previously43,44. Items from the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) assessing 
self-harm behaviours were included in both cohorts, a detailed description of the items and their application is 
available in34. Briefly, participants were first asked whether they experienced any suicidal thoughts, then suicide 
attempt, and finally acts of self-harm not related to suicide attempts. The items used to determine lifetime prev-
alence of self-harm behaviours were: “Have you ever thought about taking your own life?”; “Have you ever tried to 
take your own life?” and “(Other than when you tried to take your own life) Did you ever hurt yourself on purpose, 
for example, by cutting or burning yourself?”.

The genotyping and quality control (QC) protocol for the target sample have been described previously34,45. 
Briefly, standard protocols for DNA collection and extraction were used. Genotyping was carried out using 
commercial Illumina SNP arrays. Platform specific QC was performed including: Hardy Weinberg equilibrium 

Behaviours (lifetime)
Suicidal 
ideation

NSSH 
ideation NSSH Suicide attempt

PRS categories Self-harm ideation Self-harm (behaviour)

UKB
Undifferentiated n = 23192 
(14.7%). No lifetime suicidal 
ideation available in UKB

Undifferentiated n = 6872 (4.4%)

N for NSSH only = 
3089 (NSSH > 2.0%) N = 3563 (2.3%)

Outcome categories Thoughts of 
suicide NA NSSH Suicide attempt

Queensland Twin 
Registry 27.10% NA 3.20% 4.00%

Table 1.  Overview of the phenotypes and terminology in this study.
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deviation, individual SNP call rates, minor allele frequency threshold, and removal of population outliers (i.e. 
non-European ancestry as determined by principal component analysis). Genotype data were imputed using the 
haplotype reference consortium (HRC) reference panel.

SNP heritability and genetic correlation.  The amount of variance in risk explained by SNP effect sizes 
(i.e. the SNP heritability or hsnp

2) was calculated using LD-score regression as previously described46. The soft-
ware ldsc v 1.0.0 was used to calculate both the hsnp

2 and the genetic correlation between both GWAS summary 
statistics. This method relies on the relationship between the non-centrality parameter (NCP or χ2) of GWAS 
results and LD scores (the sum of LD-r2 of a SNP against all other SNPs on the same population) expected under a 
polygenic assumption (the bigger the LD score, the more likely to tag a causal variant)47. The fact that the expected 
value of the NCP for a given SNP is a function of the genetic covariance (hg

2) of the trait and the LDscore of that 
SNP, allow us to estimate the SNP based heritability46 (hsnp

2) and co-heritability (rg)48 of a set of traits given their 
summary statistics and known LD patterns. As the population prevalence of broad sense self-harm behaviours 
on the UK has not been reported, we assumed the population prevalence to be equal to the discovery sample 
prevalence when transforming to the liability scale using ldsc and thus estimates of hsnp

2 should be referred to 
with caution. Genetic correlations between the traits under study and other traits and diseases (~760 traits) were 
explored using the LD-Hub web platform46,49. We used a stringent definition of a significant genetic correlation 
(FDR < 0.01 using a Benjamini-Hochberg multiple testing correction, for a list of traits see Supplementary Data 
1).

Polygenic risk scores and prediction analysis.  To calculate the genetic predisposition (risk) of our tar-
get sample to the traits of interest, each variant’s effect size was obtained from the GWAS summary statistics. Our 
PRS estimation pipeline excluded indels, strand ambiguous- and low (R2 < 0.6) imputation quality-variants. The 
most significant independent SNPs were selected using a conservative clumping procedure (PLINK1.9; p1 = 1, 
p2 = 1, r2 = 0.1, kb=10000)50 to correct for inflation arising from linkage disequilibrium (LD). Eight different 
PRS were calculated for each individual using different p-value thresholds (p < 5 × 10−8, p < 1 × 10−5, p < 0.001, 
p < 0.01, p < 0.05, p < 0.1, p < 0.5, p < 1) as criteria for SNP inclusion on the PRS calculation. PRS were calcu-
lated using a dosage assumption, therefore multiplying the effect size of a given SNP by the imputed number of 
copies (using dosage probabilities) of the effect allele present in an individual. Finally, the SNP dosage effects were 
summed across all loci per individual.

To assess the association between the genetic liability to self-harm behaviour and self-harm ideation (i.e. the 
PRS) with actual self-harm phenotypes in the target sample, we employed a linear mixed model regression frame-
work. Briefly, the PRS was added to the model as a predictor variable while accounting for sex, age, age2, sex*age, 
the first five genetic principal components and imputation run, an in-house set of variables that capture array 
and cohort differences34,51, as fixed effects. Correcting for relatedness is crucial when examining family cohorts. 
Given varying degrees of relatedness in our sample, we employed a linear mixed model using genetic restricted 
maximal likelihood (GREML) with a random effects variance covariance structure defined by the sample’s genetic 
relatedness matrix obtained from GCTA 1.91.752,53. This method has been previously used to deal with related 
individuals in related target samples of PRS studies51,54. A partial R2 was used to estimate the variance explained 
by the PRS using the formula:

β
σ
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










R
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2
2

where β represents the PRS fixed effect estimate, σpheno the standard deviation of the phenotype and σPRS the 
standard deviation of the PRS respectively. Statistical significance threshold was defined accounting for multiple 
testing using a matrix spectral decomposition approach55,56 to estimate the number of effective variables being 
tested. The final significance threshold was defined at α < =0.0064

As sensitivity analysis, we tested whether the liability to major depressive disorder was driving polygenic 
prediction. To this end, MDD-PRS were calculated using SBayesR57 based on available summary statistics leav-
ing out the Australian sample58. The self-harm behaviour (and self-harm ideation) phenotype associations were 
reproduced with MDD-PRS as a covariate to identify the variance explained by self-harm behaviour (or self-harm 
ideation) over and above the effect of MDD liability.

Further, we were interested on whether the prediction of our PRS on the traits (Suicide attempt, suicide 
thoughts and NSSH) was due to shared or independent genetic factors. To this end, the significant associations 
between the PRS for self-harm ideation and suicide thoughts were reproduced including NSSH as a covariate. 
Likewise, the association between PRS for self-harm ideation and NSSH was reproduced with suicide thoughts as 
a covariate. The same approach was used for the self-harm behaviour PRS but using either suicide thoughts or sui-
cide attempt (the phenotypes with some evidence of association) as a covariate. If the significant PRS-phenotype 
associations were driven through the same genetic components, adding one of the phenotypes as a covariate 
should implicitly capture the shared genetic predisposition, thus removing the observed association. Any residual 
prediction would imply that independent genetic factors, captured by our GWAS, are underlying each phenotype.

Results
Sample demographics and self-harm behaviours prevalence.  The demographic composition for 
both the discovery and target samples are given in Tables 2 and 3 respectively. In the discovery sample, where 
genetic correlates of broad sense self-harm ideation and self-harm behaviour were assessed, males and females 
presented a similar age range, but females showed a higher prevalence of both self-harm ideation and self-harm 
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behaviour. Prevalence of NSSH, suicide thoughts and suicide attempt on the target sample were 3.4, 26.4 and 3.8% 
respectively. Prevalence of suicide thoughts was slightly lower in the female subgroup while suicide attempt was 
higher (Table 3).

GWAS of broad sense self-harm behaviours.  Two GWAS assessing self-harm ideation and self-harm 
behaviour were performed. After QC, the GWAS for self-harm ideation identified one genome-wide signifi-
cant locus on chromosome five. The GWAS for self-harm behaviour presented one genome-wide significant 
hit on chromosome nine (Table 4 and Fig. 1). A gene-based association test identified seven significantly asso-
ciated genes with self-harm ideation: SYT14, RPP14, FAM172A, SEMA3D, DCC, DDX27 and ZNFX1. For the 
GWAS on self-harm behaviour, four genes LINGO2, DCC, FBXO27 and WRB showed an association surpassing 
genome-wide significance (Fig. 2).

Heritability and genetic correlation of broad sense self-harm behaviours and thoughts.  The 
SNP heritability (hsnp

2) on the liability scale for both traits was estimated to be 11.1% (SE = 1.7%) for self-harm 
behaviour and 10.1% (SE = 1.0%) for self-harm ideation. Further, the traits were highly genetically correlated with 
each other (rg = 0.85, p = 7.8e−53). High genetic correlations with psychiatric disorders such as anxiety, depres-
sion and schizophrenia, symptoms such as insomnia, and personality traits such as irritability, miserableness, 
mood swings, and risk-taking, among others, were identified for both traits (Fig. 1). Furthermore, a negative 
correlation with subjective well-being and age at first birth (i.e. the age in which a person has their first child) was 
observed (Fig. 1 and Supplementary Fig. 1). As expected from their high genetic correlation, the genetic correla-
tions of self-harm ideation and self-harm behaviour across a range of available traits were highly similar (R > 0.8, 
Supplementary Fig. 2).

Polygenic risk score prediction.  We calculated PRS on an independent sample of ~8,700 Australian 
adults. A summary of the PRS variables and results is available on Supplementary Tables S1 and S2. The PRS for 
self-harm ideation significantly predicted suicide thoughts (maximum variance explained 0.45%, p = 4.5e−6) and 
NSSH (maximum variance explained 0.27%, p = 3.6e−4) (Fig. 3). Notably, the associations were significant for 
PRS including variants with p value cut-offs <0.001 (or less stringent cut-offs) for suicide thoughts, and p < 0.01 
(or less stringent cut-offs) for NSSH. The PRS for self-harm behaviour predicted suicide attempt (maximum var-
iance explained = 0.20%) and suicide thoughts (maximum variance explained = 0.13%) (Fig. 3). Although the 
PRS for self-harm behaviour did not predict NSSH in our sample, the PRS for self-harm behaviour was predictive 
of broad sense self-harm (regardless of suicidal intent; maximum variance explained >0.30% p < 0.001). This 
association was also diminished when correcting for NSSH and further diminished when correcting for suicide 
attempt (Supplementary Fig. 3).

Age (SD)
Self-harm 
ideation (%*)

Self-harm 
behaviour (%*)

Total sample 55.9 (7.7) 23,192 (14.8) 6872 (4.4)

Males 56.6 (7.8) 7,951 (11.7) 2102 (3.1)

Females 55.5 (7.7) 15,241 (17.2) 4770 (5.4)

Table 2.  Discovery sample (UK-Biobank) demographics and prevalence of self-harm behaviours. *Percentage 
estimated based only on the amount of non-missing subjects for each phenotype.

N Age (SD)t SA (%) ST (%) NSSH (%)

Total 8703 42.8 (12.3) 335 (3.8) 2296 (26.4) 181 (3.4*)

M 3407 43.0 (12.0) 100 (2.9) 951 (27.9) 76 (3.3*)

F 5296 42.7 (12.4) 235 (4.4) 1345 (25.4) 105 (3.5*)

Table 3.  Target sample (Queensland Twin Registry) demographics and prevalence of self-harm behaviours 
(genotyped individuals only). SA - suicide attempt, ST - suicide thoughts, NSSH - non-suicidal self-harm. 
*Percentage estimated based only on non-missing values due to a cohort missing the NSSH item. tAges at the 
time of survey.

SNP CHR BP
Effect 
allele

Other 
allele

Self-Harm ideation 
beta (p-value)

Self-Harm 
behaviour beta 
(p-value)

rs4865733 5 51819679 T C −0.008 (1.90E-08) −0.003 (7.50E-05)

rs7721698 5 51821771 C T −0.008 (2.20E-08) −0.003 (7.40E-05)

rs567805973 9 122489021 C T −0.035 (0.014) −0.046 (2.10E-08)

Table 4.  Variants associated with either self-harm ideation or self-harm behavior. SNP – Single nucleotide 
polymorphism; CHR- chromosome; BP- Base position.
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Figure 1.  GWAS results and genetic correlations of broad sense self-harm thoughts and behaviours. Miami 
plot (left panel) depicts the genome-wide association results for the phenotypes studied. The x-axis represents 
the genomic position, while the y axis represents the significance of the association between each SNP and the 
phenotype; the top panel represents significance as –log10 (pvalue), while the bottom panel uses log10 (pvalue), 
in both cases, the farther from the x axis (middle) line, the more significant the association between the 
phenotype and the variant. On the right side, a heat map depicts the genetic correlations (rg) between published 
trait GWAS and our GWAS for self-harm ideation or self-harm behaviour. Only traits with a Benjamini-
Hochberg fdr <0.01 for at least one phenotype and generated using studies independent from the UK-Biobank 
are depicted here (All the results, including UK-B traits, are available in Supplementary Data 1).

Figure 2.  Gene based association. Manhattan plots depicting gene-based test results of the GWAS. The x-axis 
represents the genes genomic position, and the y axis the significance (−log10(p-value)) of the association 
between the genes and the studied phenotype. The phenotypes for the top and bottom panels are self-harm 
ideation and self-harm behaviour respectively.
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6Scientific Reports |         (2020) 10:9713  | https://doi.org/10.1038/s41598-020-66737-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Sensitivity analyses.  Given the high genetic correlation identified with depression, we performed a sensi-
tivity analysis to assess whether depression specific genetic factors were driving the polygenic prediction. To this 
end, PRS for MDD were calculated (see methods), and the associations described above were reproduced but 
including MDD-PRS as a covariate. The overall variance explained was reduced. Nonetheless, there was still evi-
dence for an association between self-harm behaviour PRS and suicide attempt or suicide thoughts; and between 
self-harm ideation PRS and suicidal thoughts and non-suicidal self-harm (Supplementary Fig. 4).

We also performed secondary analyses to test whether the associations between PRS and phenotypes were 
driven by shared genetic factors (see methods). The PRS for self-harm ideation significantly predicted suicide 
thoughts after including NSSH as a covariate; it also predicted NSSH after including suicide thoughts as a covar-
iate, albeit with a smaller proportion of variance explained (~0.33% and ~0.15 respectively; Fig. 4). The PRS 
for self-harm behaviour continued to significantly predict suicidal attempts after including suicide thoughts as a 
covariate, but the association with suicide thoughts disappeared when suicidal attempt was included as a covariate 
in the model (Fig. 4).

Discussion
We explored the genetic architecture of broad sense self-harm by performing GWAS of self-harm ideation and 
self-harm behaviour in a population-based sample. The identification of only one genome-wide significant locus 
for each phenotype suggests that better powered genetic studies of self-harm are needed, and indicate that these 
traits are highly polygenic. Given the self-reported nature of the phenotypes, it is possible that recall bias and 
differences in subjective understanding of the mental health items could increase the noise to signal ratio in the 
discovery GWAS. Self-harm is a complex behaviour that encompasses subtypes with varying severities and recur-
rence rates59, which are not captured by the single item used to ascertain self-harm on the UKB.

We also identified eleven genome wide significant genes using gene-based association tests. Seven were asso-
ciated with self-harm ideation and four with self-harm behaviour. The gene with the strongest association with 
self-harm ideation, and the only gene associated with both phenotypes, was DCC. DCC is a gene involved in 
prefrontal cortex innervation and development. This observation could be consistent with reports of structural 
abnormalities on the brains of suicidal subjects60,61. Consistent with our results, DCC has been independently 
linked to suicidal severity on the UK-B62 and there is evidence of elevated DCC expression in the prefrontal cortex 
of post-mortem brains of subjects that died by suicide63.

Regarding genes associated with self-harm ideation, FAM172A has been previously associated with differential 
methylation linked to childhood stress in girls64, and is located in a locus recently associated with insomnia65, 
a phenotype known to be associated with self-harm and suicidality66,67. Notably, previous studies suggest that 
the gene SEMA3D, known to be associated with schizophrenia68,69, could also be associated with suicidality24. A 
link between SYT14 and bipolar disorder has been reported70. DDX27 has been associated with intelligence71,72, 
and a study reporting a relationship between lower IQ and suicide attempt has been published73. Variants near 
DDX27 and ZNFX1 have been nominally linked to proneness to anger74. No obvious relationship between RPP14 
and any psychiatric or behavioural phenotype has been reported in GWAS databases or the literature. Notably, 
we identified suggestive associations of a cluster of protocadherin genes (PCDH) on chromosome 5. PCDHAC1 
is enriched in serotonergic cells in mice75 and PCDH-family differential methylation has been recently associ-
ated with early-onset major depression76 and previously associated with schizophrenia, bipolar disorder77 and 
autism78.

Figure 3.  Polygenic prediction of self-harm behaviours. Bar plots represent the amount of variance explained 
by the polygenic risk scores on the self-harm phenotypes. The red colour (left side) shows the associations of the 
PRS for self-harm ideation whereas the blue colour (right side) depicts the associations of the PRS for self-harm 
behaviour. For each phenotype studied, the amount of variance explained by a PRS including variants with an 
increasingly liberal p-value threshold (from left to right) is shown. The bars are ordered based on the p-value 
cut-off used to construct the PRS (increasingly liberal p-values). The height of each bar represents the amount of 
variance explained. The p-value for the association between the PRS and the phenotype is shown with a colour 
scale. *Represents p < 0.05; **represents significant after multiple testing correction).
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Three genes: LINGO2, FBXO27 and WRB were associated with self-harm behaviour. LINGO2 and its paralog 
LINGO1 have been linked to neurodegenerative and psychiatric disorders79,80. Notably, previous results suggest 
that differential methylation on the promoter of FBXO27 might be linked with childhood physical aggression81, 
which is known to be highly associated with suicidal behaviours82. While WRB has been linked to cognitive 
impairment, it is unclear how it relates to self-harm behaviour. Finally, we found evidence for a suggestive asso-
ciation between STK10 and self-harm behaviour. STK10 has been linked with childhood cognitive ability83 and 
observed to be hyper-hydroxy-methylated upon acute stress84. Altogether these results provide promising can-
didate genes associated with self-harm ideation and behaviour. Future analyses should focus on replicating these 
findings and assessing their underlying mechanistic and possible translational roles on self-harm.

While the SNP-heritability of self-harm ideation and behaviour was significant—and some proportion of var-
iance on the studied phenotypes was explained by PRS—, the percentage of variance explained was still far from 
the heritability estimates for NSSH (h2~37–59%), suicidal ideation (h2~47–66%) and suicide attempt (h2~55%) 
reported in twin and family studies7,15,85. Although the UKB recruitment process does not represent a random 
sample of the UK population86—and there is evidence of genetic factors associated with completion of the men-
tal health section87— our PRS results provide evidence that the genetic associations discovered have some pre-
dictive power (albeit still a small one) over self-harm related phenotypes on an independent population. The 
above observations call for novel, well powered genetic studies of self-harm which will be required in order to 
obtain accurate SNP effect sizes88. A recent study suggest that even after well powered GWA studies have been 
conducted, most of the missing heritability for a phenotype is tagged by variants with a low MAF that cannot be 
easily imputed89. Therefore, whole genome sequencing studies of self-harm and suicidality could be paramount 
to achieve a complete understanding of the genetic architecture underlying self-harm.

The fact that a PRS for self-harm thoughts was able to explain up to 0.27% of the variance of NSSH is con-
sistent with a previous twin study reporting a significant co-heritability between suicide ideation and NSSH7. 

Figure 4.  Assessing the shared genetic aetiology of self-harm behaviours. The PRS-phenotype associations were 
repeated but accounting for the other significantly associated phenotype as a covariate (see methods). Panel 
(a) shows the result of PRS for self-harm ideation while accounting for suicide thoughts, (b) PRS for self-harm 
ideation while accounting for NSSH, (c) PRS for self-harm behaviour while accounting for suicide attempt and 
(d) PRS for self-harm behaviour while accounting for suicide thoughts. *p < 0.05, **significant after multiple 
testing correction.
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Further, the follow up regressions correcting for suicide thoughts when predicting NSSH, and for NSSH when 
predicting suicide thoughts showed a reduction of the amount of variance explained. This observation is con-
sistent with a partial shared genetic aetiology between them. To the best of our knowledge, this is the first study 
to date to report on a positive genetic prediction of NSSH. Notably, a previous PRS study assessing depression 
and self-harm in our sample34 identified an association between the genetic predisposition for depression and 
suicidal ideation, but no robust association with suicide attempt or non-suicidal self-harm. Thus, two possible 
explanations exist: (i) the previously stated genetic7 and phenotypic90 correlations between suicide thoughts and 
NSSH should be explained by depression-independent genetic factors, or (ii) the study by Maciejewski et al. 
(2017) was underpowered, possibly due to the low accuracy of the available summary statistics at that time and 
the number of cases in the target population, which limited its ability to detect an association between NSSH and 
the MDD-PRS.

Our results support the existence of a genetic overlap between NSSH and suicide thoughts. We also detected 
genetic overlap between suicide thoughts and suicide attempt, which was evidenced by the association between 
the PRS for self-harm behaviour and suicide thoughts disappearing after correcting for suicide attempt. Finally, 
evidence of a shared genetic aetiology between suicide attempt and NSSH did not reach statistical significance, as 
no PRS simultaneously (robustly) predicted both of them. A possible explanation is that genetic predisposition 
to NSSH is not associated with suicide attempt predisposition, in spite of the known overlap between NSSH and 
suicidality11,91. Another plausible explanation is a lack of power either on the discovery (due to either number of 
cases or a high noise to signal ratio) or target samples to detect an overlap between NSSH and suicide attempt due 
to a low prevalence of both behaviours.

Self-harm behaviours are likely to share genetic aetiology with several other traits and disorders. We have 
detected some of these candidate traits, such as neuroticism, nervousness and a risk-taking personality by assess-
ing their genetic correlation with self-harm thoughts and behaviours. Interestingly, a negative genetic correlation 
of both self-harm phenotypes with age at first birth was detected, and this was also observed for the most recent 
GWAS on depression58. Moreover, another study identified a negative correlation between maternal age at child 
birth and suicidality. Although the design of this study corrected for genetic confounding92, the association would 
support the hypothesis that genetic factors predisposing to changes in maternal age could impact on depression 
and therefore on suicidality and self-harm. The usage of PRS for independent traits to predict self-harm results in 
a tool of great power to test for pleiotropy and genetic overlap between them. For example, a significant genetic 
correlation of suicide attempt with insomnia has been reported35, and we have detected insomnia to also correlate 
with broad sense self-harm. The existence of GWAS summary statistics for insomnia65 makes this hypothesis 
testable using the approach implemented herein.

Some limitations relevant to this study must be acknowledged. First, this study focused only on a sample 
of European Ancestry, an approach that allows to avoid biases due to population stratification. However, this 
hinders our ability to extrapolate to other populations. Furthermore, the samples used in this study were mostly 
comprised of adults in their late 50 s for the UK-B or in their 40 s for the Australian sample. This limits our ability 
to understand adolescent and childhood related self-harm. This is important because children and adolescents 
present a higher prevalence of self-harm compared to adults. Moreover, self-harm is highly complex and heter-
ogeneous93, comprising a variety of acts such as physical injury and poisoning. Additionally, the self-reported 
nature of the phenotypes assessed in this study, could be affected by participant specific recall bias, which would 
bias our results towards the null. In the present study, we modelled a broad self-harm liability regardless of sui-
cidal intent and performed analyses to unveil its underlying aetiology. Several traits, such as depression and other 
psychiatric disorders are associated with an increased risk for self-harm, as evidenced by the high genetic correla-
tions identified. Our findings might be potentially identifying factors related to the genetic liability to depression 
and psychopathology in general. Nonetheless, the fact that we identified a positive prediction after accounting for 
MDD-PRS, and that previous depression PRS were unable to predict NSSH in our target sample34 would suggest 
our findings to be related to self-harm.

In summary, we performed GWAS of self-harm ideation and self-harm behaviour and identified associations 
with two genetic loci and eleven genes. We characterized the SNP heritability and estimated genetic correlations 
between the two traits of interest and with a range of other psychiatric, behavioural and physiological traits. Our 
results suggested an association between the genetic predisposition to broad sense self-harm (both ideation and 
behaviour) with suicide thoughts. However, no genetic overlap between PRS for self-harm ideation and suicide 
attempt was detected. The PRS for self-harm behaviour was associated with suicide attempt but the association 
with NSSH did not reach statistical significance. In addition, our results support a partially common genetic 
aetiology for NSSH and suicide thoughts and for suicide thoughts and attempt, but no statistically significant evi-
dence for a shared genetic aetiology between NSSH and suicidal attempt. Future studies should leverage novel sta-
tistical genetic approaches such as genomic structural equation modelling, to aid in the deconvolution of unique 
and shared genetic factors between suicidal and non-suicidal self-harm.
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