98 research outputs found

    Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography

    Get PDF
    Ligand binding can change the pKa of protein residues and influence enzyme catalysis. Herein, we report three sub-Angstrom resolution X-ray crystal structures of CTX-M \u3b2-lactamase, representing three stages of the enzymatic pathway, apo protein (0.79 \uc5), pre-covalent complex (0.89 \uc5), and acylation transition state analog (0.84 \uc5). The binding of a non-covalent ligand induces a proton transfer from the catalytic Ser70 to the general base Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73. QM/MM reaction path calculations determined the proton transfer barrier between Ser70 and Lys73 to be 1.53 kcal/mol, further confirming the presence of a LBHB. This LBHB is absent in the other two structures. Our data represents the first evidence of a direct and transient LBHB stabilizing a nucleophilic serine, as hypothesized by Cleland and Kreevoy. These results have important implications for the study of enzyme mechanisms as well as protein-inhibitor interactions

    Drug Discovery for Schistosomiasis: Hit and Lead Compounds Identified in a Library of Known Drugs by Medium-Throughput Phenotypic Screening

    Get PDF
    The flatworm disease schistosomiasis infects over 200 million people with just one drug (praziquantel) available—a concern should drug resistance develop. Present drug discovery approaches for schistosomiasis are slow and not conducive to automation in a high-throughput format. Therefore, we designed a three-component screen workflow that positions the larval (schistosomulum) stage of S. mansoni at its apex followed by screens of adults in culture and, finally, efficacy tests in infected mice. Schistosomula are small enough and available in sufficient numbers to interface with automated liquid handling systems and prosecute thousands of compounds in short time frames. We inaugurated the workflow with a 2,160 compound library that includes known drugs in order to cost effectively ‘re-position’ drugs as new therapies for schistosomiasis and/or identify compounds that could be modified to that end. We identify a variety of ‘hit’ compounds (antibiotics, psychoactives, antiparasitics, etc.) that produce behavioral responses (phenotypes) in schistosomula and adults. Tests in infected mice of the most promising hits identified a number of ‘leads,’ one of which compares reasonably well with praziquantel in killing worms, decreasing egg production by the parasite, and ameliorating disease pathology. Efforts continue to more fully automate the workflow. All screen data are posted online as a drug discovery resource

    Development of a Novel Virtual Screening Cascade Protocol to Identify Potential Trypanothione Reductase Inhibitors

    Get PDF
    The implementation of a novel sequential computational approach that can be used effectively for virtual screening and identification of prospective ligands that bind to trypanothione reductase (TryR) is reported. The multistep strategy combines a ligand-based virtual screening for building an enriched library of small molecules with a docking protocol (AutoDock, X-Score) for screening against the TryR target. Compounds were ranked by an exhaustive conformational consensus scoring approach that employs a rank-by-rank strategy by combining both scoring functions. Analysis of the predicted ligand-protein interactions highlights the role of bulky quaternary amine moieties for binding affinity. The scaffold hopping (SHOP) process derived from this computational approach allowed the identification of several chemotypes, not previously reported as antiprotozoal agents, which includes dibenzothiepine, dibenzooxathiepine, dibenzodithiepine, and polycyclic cationic structures like thiaazatetracyclo-nonadeca-hexaen-3-ium. Assays measuring the inhibiting effect of these compounds on T. cruzi and T. brucei TryR confirm their potential for further rational optimization

    A Screen against Leishmania Intracellular Amastigotes: Comparison to a Promastigote Screen and Identification of a Host Cell-Specific Hit

    Get PDF
    The ability to screen compounds in a high-throughput manner is essential in the process of small molecule drug discovery. Critical to the success of screening strategies is the proper design of the assay, often implying a compromise between ease/speed and a biologically relevant setting. Leishmaniasis is a major neglected disease with limited therapeutic options. In order to streamline efforts for the design of productive drug screens against Leishmania, we compared the efficiency of two screening methods, one targeting the free living and easily cultured promastigote (insect–infective) stage, the other targeting the clinically relevant but more difficult to culture intra-macrophage amastigote (mammal-infective) stage. Screening of a 909-member library of bioactive compounds against Leishmania donovani revealed 59 hits in the promastigote primary screen and 27 in the intracellular amastigote screen, with 26 hits shared by both screens. This suggested that screening against the promastigote stage, although more suitable for automation, fails to identify all active compounds and leads to numerous false positive hits. Of particular interest was the identification of one compound specific to the infective amastigote stage of the parasite. This compound affects intracellular but not axenic parasites, suggesting a host cell-dependent mechanism of action, opening new avenues for anti-leishmanial chemotherapy

    Identification of Small Molecule Lead Compounds for Visceral Leishmaniasis Using a Novel Ex Vivo Splenic Explant Model System

    Get PDF
    Visceral leishmaniasis is a life threatening parasitic disease present in several countries of the world. New drugs are needed to treat this disease because treatments are becoming increasingly ineffective. We established a novel system to screen for new anti-leishmanial compounds that utilizes spleen cells from hamsters infected with the parasite Leishmania donovani. The parasite strain we used was genetically engineered to emit light by the incorporation of the firefly luciferase gen. This laboratory test system has the advantage of reproducing the cellular environment where the drug has to combat the infection. The efficacy of the compounds is easily determined by measuring the light emitted by the surviving parasites in a luminometer after exposing the infected cells to the test compounds. The screening of more than 4,000 molecules showed that 84 (2.1%) of them showed anti-leishmanial activity and had an acceptable toxicity evaluation. Eighty two percent of these molecules, which had varied chemical structures, were previously unknown to have anti-leishmanial activity. Further studies in animals of these new chemical entities may identify drug candidates for the treatment of visceral leishmaniasis

    A Comparative Chemogenomics Strategy to Predict Potential Drug Targets in the Metazoan Pathogen, Schistosoma mansoni

    Get PDF
    Schistosomiasis is a prevalent and chronic helmintic disease in tropical regions. Treatment and control relies on chemotherapy with just one drug, praziquantel and this reliance is of concern should clinically relevant drug resistance emerge and spread. Therefore, to identify potential target proteins for new avenues of drug discovery we have taken a comparative chemogenomics approach utilizing the putative proteome of Schistosoma mansoni compared to the proteomes of two model organisms, the nematode, Caenorhabditis elegans and the fruitfly, Drosophila melanogaster. Using the genome comparison software Genlight, two separate in silico workflows were implemented to derive a set of parasite proteins for which gene disruption of the orthologs in both the model organisms yielded deleterious phenotypes (e.g., lethal, impairment of motility), i.e., are essential genes/proteins. Of the 67 and 68 sequences generated for each workflow, 63 were identical in both sets, leading to a final set of 72 parasite proteins. All but one of these were expressed in the relevant developmental stages of the parasite infecting humans. Subsequent in depth manual curation of the combined workflow output revealed 57 candidate proteins. Scrutiny of these for ‘druggable’ protein homologs in the literature identified 35 S. mansoni sequences, 18 of which were homologous to proteins with 3D structures including co-crystallized ligands that will allow further structure-based drug design studies. The comparative chemogenomics strategy presented generates a tractable set of S. mansoni proteins for experimental validation as drug targets against this insidious human pathogen
    corecore