49 research outputs found

    Relationship between Altitude and Lithium in Groundwater in the United States of America: Results of a 1992–2003 Study

    Get PDF
    Therapeutic dosages of lithium are known to reduce suicide rates, which has led to investigations of confounding environmental risk factors for suicide such as lithium in groundwater. It has been speculated that this might play a role in the potential relationship between suicide and altitude. A recent study in Austria involving geospatial analysis of lithium in groundwater and suicide found lower levels of lithium at higher altitudes. Since there is no reason to suspect this correlation is universal given variation in geology, the current study set out to investigate the relationship between altitude and lithium in groundwater in the United States of America (USA). The study utilised data extracted from the National Water-Quality Assessment programme implemented by the United States Geological Survey that has collected 5,183 samples from 48 study areas in USA for the period of 1992 to 2003. Lithium was the trace-element of interest and 518 samples were used in the current analyses. Due to uneven lithium sampling within the country, only the states (n=15) with the highest number of lithium samples were included. Federal information processing standard codes were used to match data by county with the mean county altitude calculated using altitude data from the Shuttle Radar Topography Mission. The study was controlled for potential confounding factors known to affect levels of lithium in groundwater including aquifer, aquifer type, lithology, water level and the depths of wells. The levels of lithium in groundwater, increased with altitude (R2 = 0.226, P \u3c0.001) during the study period. These findings differ from the Austrian study and suggest a need for further research accounting also for the impact of geographical variation

    The Role of Damage and Recrystallization in the Elastic Properties of Columnar Ice

    Get PDF
    Effects of damage on elastic properties were studied in columnar-grained specimens of freshwater and saline ice, subjected, at −10°C, to varying levels of inelastic strain. The ice was compressed uniaxially at constant strain rates up to 0.20 strain, which caused localized recrystallization and imparted damage in the form of non-propagating cracks. Damage was quantified in terms of dimensionless crack density, which, along with recrystallized area fraction, was determined from thin sections. The change in porosity due to stress-induced cracks served as another indicator of damage. Elastic properties were derived using P-wave and S-wave ultrasonic transmission velocities measured in across-column directions through the damaged ice, either parallel (x 1) or perpendicular (x 2) to the initial loading direction. In general, as damage increased with greater strain, the ice became more compliant and (particularly freshwater ice) more anisotropic. Furthermore, with increasing strain rate, the magnitude of these effects and crack density tended to increase, in contrast to the recrystallized area fraction, which tended to decrease. We observed compliance to correspond closely with porosity and with dimensionless crack density, for strains up to 0.10. At greater levels of strain these correspondences became less clear due, in part, to the different character of the damage

    Effects of prestrain on the ductile-to-brittle transition of ice

    Get PDF
    AbstractThe ductile-to-brittle transition was investigated in prestrained columnar ice at −10 °C. Laboratory-grown specimens of freshwater and saline ice were prestrained under uniaxial across-column compression (to levels from εp = 0.003 to εp = 0.20, at constant strain rates in the ductile regime) and likewise reloaded (at rates from 1 × 10−6s−1 to 3 × 10−2s−1). Prestrain caused solid-state recrystallization as well as damage in the form of non-propagating microcracks. The ductile-to-brittle transition strain rate ε˙D/B increased by a factor of 3–10 after prestrain of εp = 0.035 in both freshwater and saline ice, compared to that of initially undamaged ice of the same type. Additional prestrain had little further effect on ε˙D/B. The results are interpreted within the framework of a model (proposed by Schulson, 1990, and Renshaw and Schulson, 2001) that predicts the transition strain rate based on the micromechanical boundary between creep and fracture processes. Model parameters primarily affected by prestrain were the power-law creep coefficient B (more so than the creep exponent n), Young's modulus E and, by extension, the fracture toughness KIc

    Plastic Faulting in Saltwater Ice

    Get PDF
    Compression experiments on laboratory-grown columnar S2 saltwater ice loaded triaxially through proportional loading at T = –20°C at applied strain rates of ε = 10–5–10–1 s–1 demonstrate that plastic (P) faulting is a mode of failure in saltwater ice when rapidly loaded under a high degree of confinement. In terms of microstructure, mechanical behavior and strength, saltwater ice that fails via P-faulting is almost indistinguishable from columnar S2 freshwater ice that fails via P-faulting loaded under the same conditions. The results also demonstrate that saltwater ice loaded rapidly may exhibit yet another mode of failure, in addition to P-faulting, through what appears to be a mechanism of pore collapse

    Surficial Redistribution of Fallout 131iodine in a Small Temperate Catchment

    Get PDF
    Isotopes of iodine play significant environmental roles, including a limiting micronutrient (127I), an acute radiotoxin (131I), and a geochemical tracer (129I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout 131iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it is continuously focused to surface soils over a period of weeks following deposition. Mobilization of historic (pre-Fukushima) 137cesium observed concurrently in these soils suggests that the focusing of iodine to surface soils may be biologically mediated. Atmospherically deposited iodine is subsequently redistributed from the soil system via fluvial processes in a manner analogous to that of the particle-reactive tracer 7beryllium, a consequence of the radionuclides’ shared sorption affinity for fine, particulate organic matter. These processes of surficial redistribution create iodine hotspots in the terrestrial environment where fine, particulate organic matter accumulates, and in this manner regulate the delivery of iodine nutrients and toxins alike from small catchments to larger river systems, lakes and estuaries

    Freeze Bond Failure Under Tensile Stress due to Flexural Loading

    No full text
    The flexural strength of ice plates bonded together by freezing water (freeze-bond) is investigated in this work. Freshwater S2 columnar grained ice was used as a parent material to be bonded; water of salinities ranging from 0 to 35 ppt was used to generate bonds. Freezing occurred in air at temperatures ranging from -3 to -25 °C and under compression of about 4 kPa for periods of time varying from 0.5 to ~100 hrs. The bond strength was measured under 4-point bending. The study revealed that the flexural strength of bonded ice decreases with an increase in both salinity and temperature. The flexural strength of freshwater bonds is similar or higher than the flexural strength of intact parent material after less than 0.5 hrs freezing. The strength of the saline ice bonds levels off within ~6-12 hours of freezing.Peer reviewe

    Rapid Healing of Thermal Cracks in Ice

    No full text
    The structural integrity of the arctic sea ice cover is under threat owing largely to the combination of thinning and larger waves. Another contributor may be thermal cracking. In concentrating stress, thermal cracks may weaken the cover. Of interest, therefore, is the strength of thermally damaged ice. To that end, new experiments were performed on sea ice and on lab-grown saline and salt-free ice that had been cracked by thermal shocking. As expected, the cracks weakened the materials in accord with fracture mechanics. However, within tens to hundreds of seconds of shocking, the strength recovered completely, for the ice had healed. Healing is attributed to thermally activated sintering related to surface diffusion, assisted possibly by the formation of a quasi-liquid layer on crack faces. Whether behavior on the small scale is indicative of behavior on the large scale remains to be determined.Peer reviewe
    corecore