21 research outputs found

    Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination

    Get PDF
    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca2+ than of Mg2+, we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca2+ induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg2+, ADP/Mg2+ or ADP/Ca2+ does not. A high strand exchange activity is observed for the filament formed with ATP/Ca2+, whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca2+ stabilizes the loop conformation and thereby the protein–DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange

    Probing Rad51-DNA interactions by changing DNA twist

    Get PDF
    In eukaryotes, Rad51 protein is responsible for the recombinational repair of double-strand DNA breaks. Rad51 monomers cooperatively assemble on exonuclease-processed broken ends forming helical nucleo-protein filaments that can pair with homologous regions of sister chromatids. Homologous pairing allows the broken ends to be reunited in a complex but error-free repair process. Rad51 protein has ATPase activity but its role is poorly understood, as homologous pairing is independent of adenosine triphosphate (ATP) hydrolysis. Here we use magnetic tweezers and electron microscopy to investigate how changes of DNA twist affect the structure of Rad51-DNA complexes and how ATP hydrolysis participates in this process. We show that Rad51 protein can bind to double-stranded DNA in two different modes depending on the enforced DNA twist. The stretching mode is observed when DNA is unwound towards a helical repeat of 18.6 bp/turn, whereas a non-stretching mode is observed when DNA molecules are not permitted to change their native helical repeat. We also show that the two forms of complexes are interconvertible and that by enforcing changes of DNA twist one can induce transitions between the two forms. Our observations permit a better understanding of the role of ATP hydrolysis in Rad51-mediated homologous pairing and strand exchang

    Design of Potent Inhibitors of Human RAD51 Recombinase Based on BRC Motifs of BRCA2 Protein: Modeling and Experimental Validation of a Chimera Peptide

    Get PDF
    We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide

    Characterization of Affitin proteolytic digestion in biorelevant media and improvement of their stabilities via protein engineering

    No full text
    International audienceAffitins are a novel class of small 7 kDa artificial proteins which can be used as antibody substitutes in therapeutic, diagnostic and biotechnological applications. One challenge for this type of protein agent is their behaviour in the context of oral administration. The digestive system is central, and biorelevant media have fast emerged as relevant and reliable tools for evaluating the bioavailability of drugs. This study describes, for the first time, the stability of Affitins under simulated gastric and intestinal digestion conditions. Affitins appear to be degraded into stable fragments in in vitro gastric medium. We identified cleavage sites generated by pepsin that were silenced by site-directed mutagenesis. This protein engineering allowed us to enhance Affitin properties. We showed that a mutant M1 containing a double mutation of amino acid residues 6 and 7 in H4 and C3 Affitins acquired a resistance against proteolytic digestion. In addition, these mutations were beneficial for target affinity, as well as for production yield. Finally, we found that the mutated residues kept or increased the important pH and temperature stabilities of Affitins. These improvements are particularly sought after in the development of engineered binding proteins for research tools, preclinical studies and clinical applications

    Structural Analysis of the Human Rad51 Protein-DNA Complex Filament by Tryptophan Fluorescence Scanning Analysis: Transmission of Allosteric Effects between ATP Binding and DNA Binding

    No full text
    International audienceHuman Rad51 (HsRad51) catalyzes the strand exchange reaction, a crucial step in homologous recombination, by forming a filamentous complex with DNA. The structure of this filament is modified by ATP, which is required and hydrolyzed for the reaction. We analyzed the structure and the ATP-promoted conformational change of this filament. We systematically replaced aromatic residues in the protein, one at a time, with tryptophan, a fluorescent probe, and examined its effect on the activities (DNA binding, ATPase, ATP-promoted conformational change, and strand exchange reaction) and the fluorescence changes upon binding of ATP and DNA. Some residues were also replaced with alanine. We thus obtained structural information about various positions of the protein in solution. All the proteins conserved, at least partially, their activities. However, the replacement of histidine at position 294 (H294) and phenylalanine at 129 (F129) affected the ATP-induced conformational change of the DNA-HsRad51 filament, although it did not prevent DNA binding. F129 is considered to be close to the ATP-binding site and to H294 of a neighboring subunit. ATP probably modifies the structure around F129 and affects the subunit/subunit contact around H294 and the structure of the DNA-binding site. The replacement also reduced the DNA-dependent ATPase activity, suggesting that these residues are also involved in the transmission of the allosteric effect of DNA to the ATP-binding site, which is required for the stimulation of ATPase activity by DNA. The fluorescence analyses supported the structural change of the DNA-binding site by ATP and that of the ATP-binding site by DNA. This information will be useful to build a molecular model of the Rad51-DNA complex and to understand the mechanism of activation of Rad51 by ATP and that of the Rad51-promoted strand exchange reaction

    The archaeal "7kDa DNA-binding" proteins: extended characterization of an old gifted family

    No full text
    International audienceThe " 7 kDa DNA-binding " family, also known as the Sul7d family, is composed of chromatin proteins from the Sulfolobales archaeal order. Among them, Sac7d and Sso7d have been the focus of several studies with some characterization of their properties. Here, we studied eleven other proteins alongside Sac7d and Sso7d under the same conditions. The dissociation constants of the purified proteins for binding to double-stranded DNA (dsDNA) were determined in phosphate-buffered saline at 25 °C and were in the range from 11 μM to 22 μM with a preference for G/C rich sequences. In accordance with the extremophilic origin of their hosts, the proteins were found highly stable from pH 0 to pH 12 and at temperatures from 85.5 °C to 100 °C. Thus, these results validate eight putative " 7 kDa DNA-binding " family proteins and show that they behave similarly regarding both their function and their stability among various genera and species. As Sac7d and Sso7d have found numerous uses as molecular biology reagents and artificial affinity proteins, this study also sheds light on even more attractive proteins that will facilitate engineering of novel highly robust reagents. In living organisms, the long genomic DNA has to be packed in order to fit into cells, while the genetic information must stay accessible for replication and transcription events. To this aim, organisms have developed different compaction systems, such as the wrapping of DNA around histones to form the chromatin in Eukarya, and the supercoiling of DNA with the help of non-histone proteins to form the nucleoid in Bacteria. Archaea often live in extreme environments and have the additional challenge to protect their genomic DNA from extreme conditions, such as high temperatures. Many Archaea contain homologs of eukaryotic histones, but Desulfurococcales, Thermoplasmatales and Sulfolobales use a different kind of packaging proteins 1,2. Hyperthermophile and acidophile archaea of the Sulfolobales order from the Crenarchaeota kingdom express small basic DNA-binding proteins, which represent about 5% of the total soluble cellular proteins, sufficient to coat the entire genome of a Sulfolobus cell 3. These proteins constitute the family called " 7 kDa DNA-binding " or Sul7d 4. They were first isolated from Sulfolobus acido-caldarius which produces five of them, named Sac7a, b, c, d, and e. Sac7d and Sac7e are encoded by distinct genes, while Sac7a and b are truncated versions of Sac7d 5–7. Highly similar homologs have been found in all Sulfolobus species, such as Sso7d from Sulfolobus solfataricus 8 , and Ssh7a and Ssh7b from Sulfolobus shibatae-two proteins encoded by two distinct genes 3,9. Sac7d and Sso7d are the two most studied proteins of this family. They have been characterized for their structure, function, chemical stability and biophysical properties 7. Sac7d and Sso7d are hyperthermostable (T m = 90.4 °C and 100.2 °C, respectively) 10,11 and are resistant from pH 0 up to at least pH 12 12,13. Although Sac7d and Sso7d sequences show only few differences, Sso7d is more stable than Sac7d. Their three-dimensional structures show that they both fold as an SH3-like domain capped by a C-terminal α-helix 14,15 and that they sharply kink the double DNA helix upon binding into the minor groove 16,17. It has been shown that Sac7d and Sso7d are general dsDNA binders with K D values varying in a salt dependent manner from 20 nM (low salt) to 3.8 μ M (high salt) for Sac7d, and from 116 nM to 12.8 μ M for Sso7d, and with a preference for G/C rich sequences 18,19. Sac7d has the property to increase the thermal stability of DNA duplexes by as much as 43.5 °C 6,15. Furthermore, Ssh7a and Ssh7b have been partially characterized and an affinity for dsDNA of about 100 n
    corecore