2,800 research outputs found

    A de Finetti representation theorem for infinite dimensional quantum systems and applications to quantum cryptography

    Full text link
    According to the quantum de Finetti theorem, if the state of an N-partite system is invariant under permutations of the subsystems then it can be approximated by a state where almost all subsystems are identical copies of each other, provided N is sufficiently large compared to the dimension of the subsystems. The de Finetti theorem has various applications in physics and information theory, where it is for instance used to prove the security of quantum cryptographic schemes. Here, we extend de Finetti's theorem, showing that the approximation also holds for infinite dimensional systems, as long as the state satisfies certain experimentally verifiable conditions. This is relevant for applications such as quantum key distribution (QKD), where it is often hard - or even impossible - to bound the dimension of the information carriers (which may be corrupted by an adversary). In particular, our result can be applied to prove the security of QKD based on weak coherent states or Gaussian states against general attacks.Comment: 11 pages, LaTe

    Discrimination between the superconducting gap and the pseudo-gap in Bi2212 from intrinsic tunneling spectroscopy in magnetic field

    Full text link
    Intrinsic tunneling spectroscopy in high magnetic field (HH) is used for a direct test of superconducting features in a quasiparticle density of states of high-TcT_c superconductors. We were able to distinguish with a great clarity two co-existing gaps: (i) the superconducting gap, which closes as HHc2(T)H \to H_{c2}(T) and TTc(H)T\to T_c(H), and (ii) the cc-axis pseudo-gap, which does not change neither with HH, nor TT. Strikingly different magnetic field dependencies, together with previously observed different temperature dependencies of the two gaps ~\cite{Krasnov}, speak against the superconducting origin of the pseudo-gap.Comment: 4 pages, 4 eps figure

    A measure of majorisation emerging from single-shot statistical mechanics

    Full text link
    The use of the von Neumann entropy in formulating the laws of thermodynamics has recently been challenged. It is associated with the average work whereas the work guaranteed to be extracted in any single run of an experiment is the more interesting quantity in general. We show that an expression that quantifies majorisation determines the optimal guaranteed work. We argue it should therefore be the central quantity of statistical mechanics, rather than the von Neumann entropy. In the limit of many identical and independent subsystems (asymptotic i.i.d) the von Neumann entropy expressions are recovered but in the non-equilbrium regime the optimal guaranteed work can be radically different to the optimal average. Moreover our measure of majorisation governs which evolutions can be realized via thermal interactions, whereas the nondecrease of the von Neumann entropy is not sufficiently restrictive. Our results are inspired by single-shot information theory.Comment: 54 pages (15+39), 9 figures. Changed title / changed presentation, same main results / added minor result on pure bipartite state entanglement (appendix G) / near to published versio

    Antiferromagnetic order and dielectric gap within the vortex core of antiferromagnetic superconductor

    Full text link
    The structure of a superconducting vortex has been studied theoretically for a dirty antiferromagnetic superconductor (AFSC), modelling an AFSC as a doped semi-metal with s-wave superconducting pairing and antiferromagnetic (dielectric) interaction between electrons (holes). It is also supposed that the quasiparticles dispersion law possesses the property of nesting. The distribution of the superconducting and magnetic order parameters near the vortex core is calculated. It is shown that the antiferromagnetic order, been suppressed at large distances, is restored around the superconducting flux and the vortex core is in fact insulating and antiferromagnetic, in stark contrast to the normal metal cores of traditional superconductors. Moreover, our model calculations predict that as the temperature decreases the flux region of the superconductivity and antiferromagnetism coexistence increases.Comment: 9 pages, 3 Postscript figures,NATO Advanced Research Workshop on "Vortex dynamics in superconductors and other complex systems" Yalta, Crimea, Ukraine, 13-17 September 200

    Yakhot's model of strong turbulence: A generalization of scaling models of turbulence

    Full text link
    We report on some implications of the theory of turbulence developed by V. Yakhot [V. Yakhot, Phys. Rev. E {\bf 57}(2) (1998)]. In particular we focus on the expression for the scaling exponents ζn\zeta_{n}. We show that Yakhot's result contains three well known scaling models as special cases, namely K41, K62 and the theory by V. L'vov and I. Procaccia [V. L'vov & I. Procaccia, Phys. Rev. E {\bf 62}(6) (2000)]. The model furthermore yields a theoretical justification for the method of extended self--similarity (ESS).Comment: 8 page

    Decoupling with unitary approximate two-designs

    Full text link
    Consider a bipartite system, of which one subsystem, A, undergoes a physical evolution separated from the other subsystem, R. One may ask under which conditions this evolution destroys all initial correlations between the subsystems A and R, i.e. decouples the subsystems. A quantitative answer to this question is provided by decoupling theorems, which have been developed recently in the area of quantum information theory. This paper builds on preceding work, which shows that decoupling is achieved if the evolution on A consists of a typical unitary, chosen with respect to the Haar measure, followed by a process that adds sufficient decoherence. Here, we prove a generalized decoupling theorem for the case where the unitary is chosen from an approximate two-design. A main implication of this result is that decoupling is physical, in the sense that it occurs already for short sequences of random two-body interactions, which can be modeled as efficient circuits. Our decoupling result is independent of the dimension of the R system, which shows that approximate 2-designs are appropriate for decoupling even if the dimension of this system is large.Comment: Published versio

    Calculation of the nucleon axial charge in lattice QCD

    Get PDF
    Protons and neutrons have a rich structure in terms of their constituents, the quarks and gluons. Understanding this structure requires solving Quantum Chromodynamics (QCD). However QCD is extremely complicated, so we must numerically solve the equations of QCD using a method known as lattice QCD. Here we describe a typical lattice QCD calculation by examining our recent computation of the nucleon axial charge.Comment: Prepared for Scientific Discovery through Advanced Computing (SciDAC 2006), Denver, Colorado, June 25-29 200

    Nucleon structure in the chiral regime with domain wall fermions on an improved staggered sea

    Get PDF
    Moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon are presented from a preliminary analysis of lattice results using pion masses down to 359 MeV. The twist two matrix elements are calculated using a mixed action of domain wall valence quarks and asqtad staggered sea quarks and are renormalized perturbatively. Several observables are extrapolated to the physical limit using chiral perturbation theory. Results are compared with experimental moments of quark distributions and electromagnetic form factors and phenomenologically determined generalized form factors, and the implications on the transverse structure and spin content of the nucleon are discussed.Comment: Talks of J.W. Negele and D.B. Renner at Lattice 200

    Sequential Strong Measurements and Heat Vision

    Get PDF
    We study scenarios where a finite set of non-demolition von-Neumann measurements are available. We note that, in some situations, repeated application of such measurements allows estimating an infinite number of parameters of the initial quantum state, and illustrate the point with a physical example. We then move on to study how the system under observation is perturbed after several rounds of projective measurements. While in the finite dimensional case the effect of this perturbation always saturates, there are some instances of infinite dimensional systems where such a perturbation is accumulative, and the act of retrieving information about the system increases its energy indefinitely (i.e., we have `Heat Vision'). We analyze this effect and discuss a specific physical system with two dichotomic von-Neumann measurements where Heat Vision is expected to show.Comment: See the Appendix for weird examples of heat visio

    Parameter-free expression for superconducting Tc in cuprates

    Get PDF
    A parameter-free expression for the superconducting critical temperature of layered cuprates is derived which allows us to express Tc in terms of experimentally measured parameters. It yields Tc values observed in about 30 lanthanum, yttrium and mercury-based samples for different levels of doping. This remarkable agreement with the experiment as well as the unusual critical behaviour and the normal-state gap indicate that many cuprates are close to the Bose-Einstein condensation regime.Comment: 5 pages, 2 figures. Will be published in Physical Review
    corecore