4,780 research outputs found

    de Finetti reductions for correlations

    Full text link
    When analysing quantum information processing protocols one has to deal with large entangled systems, each consisting of many subsystems. To make this analysis feasible, it is often necessary to identify some additional structure. de Finetti theorems provide such a structure for the case where certain symmetries hold. More precisely, they relate states that are invariant under permutations of subsystems to states in which the subsystems are independent of each other. This relation plays an important role in various areas, e.g., in quantum cryptography or state tomography, where permutation invariant systems are ubiquitous. The known de Finetti theorems usually refer to the internal quantum state of a system and depend on its dimension. Here we prove a different de Finetti theorem where systems are modelled in terms of their statistics under measurements. This is necessary for a large class of applications widely considered today, such as device independent protocols, where the underlying systems and the dimensions are unknown and the entire analysis is based on the observed correlations.Comment: 5+13 pages; second version closer to the published one; new titl

    Generalized Entropies

    Full text link
    We study an entropy measure for quantum systems that generalizes the von Neumann entropy as well as its classical counterpart, the Gibbs or Shannon entropy. The entropy measure is based on hypothesis testing and has an elegant formulation as a semidefinite program, a type of convex optimization. After establishing a few basic properties, we prove upper and lower bounds in terms of the smooth entropies, a family of entropy measures that is used to characterize a wide range of operational quantities. From the formulation as a semidefinite program, we also prove a result on decomposition of hypothesis tests, which leads to a chain rule for the entropy.Comment: 21 page

    Axial charges of octet and decuplet baryons

    Full text link
    We present a study of axial charges of baryon ground and resonant states with relativistic constituent quark models. In particular, the axial charges of octet and decuplet NN, ÎŁ\Sigma, Ξ\Xi, Δ\Delta, Σ∗\Sigma^*, and Ξ∗\Xi^* baryons are considered. The theoretical predictions are compared to existing experimental data and results from other approaches, notably from lattice quantum chromodynamics and chiral perturbation theory. The relevance of axial charges with regard to π\pi-dressing and spontaneous chiral-symmetry breaking is discussed

    Device for in-situ cleaving of hard crystals

    Get PDF
    Cleaving crystals in a vacuum chamber is a simple method for obtaining atomically flat and clean surfaces for materials that have a preferential cleaving plane. Most in-situ cleavers use parallel cutting edges that are applied from two sides on the sample. We found in ambient experiments that diagonal cutting pliers, where the cleavage force is introduced in a single point instead of a line work very well also for hard materials. Here, we incorporate the diagonal cutting plier principle in a design compatible with ultra-high vacuum requirements. We show optical microscopy (mm scale) and atomic force microscopy (atomic scale) images of NiO(001) surfaces cleaved with this device.Comment: 7 pages, 3 figures Submitted to Review of Scientific Instruments (2005

    An All-But-One Entropic Uncertainty Relation, and Application to Password-based Identification

    Full text link
    Entropic uncertainty relations are quantitative characterizations of Heisenberg's uncertainty principle, which make use of an entropy measure to quantify uncertainty. In quantum cryptography, they are often used as convenient tools in security proofs. We propose a new entropic uncertainty relation. It is the first such uncertainty relation that lower bounds the uncertainty in the measurement outcome for all but one choice for the measurement from an arbitrarily large (but specifically chosen) set of possible measurements, and, at the same time, uses the min-entropy as entropy measure, rather than the Shannon entropy. This makes it especially suited for quantum cryptography. As application, we propose a new quantum identification scheme in the bounded quantum storage model. It makes use of our new uncertainty relation at the core of its security proof. In contrast to the original quantum identification scheme proposed by Damg{\aa}rd et al., our new scheme also offers some security in case the bounded quantum storage assumption fails hold. Specifically, our scheme remains secure against an adversary that has unbounded storage capabilities but is restricted to non-adaptive single-qubit operations. The scheme by Damg{\aa}rd et al., on the other hand, completely breaks down under such an attack.Comment: 33 pages, v

    Security of continuous-variable quantum key distribution against general attacks

    Full text link
    We prove the security of Gaussian continuous-variable quantum key distribution against arbitrary attacks in the finite-size regime. The novelty of our proof is to consider symmetries of quantum key distribution in phase space in order to show that, to good approximation, the Hilbert space of interest can be considered to be finite-dimensional, thereby allowing for the use of the postselection technique introduced by Christandl, Koenig and Renner (Phys. Rev. Lett. 102, 020504 (2009)). Our result greatly improves on previous work based on the de Finetti theorem which could not provide security for realistic, finite-size, implementations.Comment: 5 pages, plus 11 page appendi

    Hole Transport in Exfoliated Monolayer MoS2_2

    Full text link
    Ideal monolayers of common semiconducting transition metal dichalcogenides (TMDCs) such as MoS2_2, WS2_2, MoSe2_2, and WSe2_2 possess many similar electronic properties. As it is the case for all semiconductors, however, the physical response of these systems is strongly determined by defects in a way specific to each individual compound. Here we investigate the ability of exfoliated monolayers of these TMDCs to support high-quality, well-balanced ambipolar conduction, which has been demonstrated for WS2_2, MoSe2_2, and WSe2_2, but not for MoS2_2. Using ionic-liquid gated transistors we show that, contrary to WS2_2, MoSe2_2, and WSe2_2, hole transport in exfoliated MoS2_2 monolayers is systematically anomalous, exhibiting a maximum in conductivity at negative gate voltage (VG_G) followed by a suppression of up to 100 times upon further increasing VG_G. To understand the origin of this difference we have performed a series of experiments including the comparison of hole transport in MoS2_2 monolayers and thicker multilayers, in exfoliated and CVD-grown monolayers, as well as gate-dependent optical measurements (Raman and photoluminescence) and scanning tunneling imaging and spectroscopy. In agreement with existing {\it ab-initio} calculations, the results of all these experiments are consistently explained in terms of defects associated to chalcogen vacancies that only in MoS2_2 monolayers -- but not in thicker MoS2_2 multilayers nor in monolayers of the other common semiconducting TMDCs -- create in-gap states near the top of the valence band that act as strong hole traps. Our results demonstrate the importance of studying systematically how defects determine the properties of 2D semiconducting materials and of developing methods to control them

    Endotaxial Si nanolines in Si(001):H

    Full text link
    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometre long at a constant width of exactly four Si dimers (1.54nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality.Comment: 8 pages, 6 figure

    Decoupling with unitary approximate two-designs

    Full text link
    Consider a bipartite system, of which one subsystem, A, undergoes a physical evolution separated from the other subsystem, R. One may ask under which conditions this evolution destroys all initial correlations between the subsystems A and R, i.e. decouples the subsystems. A quantitative answer to this question is provided by decoupling theorems, which have been developed recently in the area of quantum information theory. This paper builds on preceding work, which shows that decoupling is achieved if the evolution on A consists of a typical unitary, chosen with respect to the Haar measure, followed by a process that adds sufficient decoherence. Here, we prove a generalized decoupling theorem for the case where the unitary is chosen from an approximate two-design. A main implication of this result is that decoupling is physical, in the sense that it occurs already for short sequences of random two-body interactions, which can be modeled as efficient circuits. Our decoupling result is independent of the dimension of the R system, which shows that approximate 2-designs are appropriate for decoupling even if the dimension of this system is large.Comment: Published versio
    • 

    corecore