731 research outputs found

    Linking urban design to sustainability : formal indicators of social urban sustainability field research in Perth, Western Australia

    Get PDF
    The making of a livable urban community is a complex endeavor. For much of the 20th Century plannersand engineers believed that modern and rational decision-making would create successful cities. Today, political leaders across the globe are considering ways to promote sustainable development and the concepts of New Urbanism are making their way from the drawing board to the ground. While much has changed in the world, the creation of a successful street is as much of an art today as it was in the 1960s.Our work seeks to investigate 'street life' in cities as a crucial factor towards community success. What arethe components of the neighborhood and street form that contributes to the richness of street life? To answer this question we rely on the literature. The aim of the Formal Indicators of Social Urban Sustainability studyis to measure the formal components of a neighborhood and street that theorists have stated important in promoting sustainability. This paper will describe how this concept helps to bridge urban design and sustainability. It will describe the tool and show how this was applied in a comparative assessment of Joondalup and Fremantle, two urban centers in the Perth metropolitan area

    Ground-state van der Waals forces in planar multilayer magnetodielectrics

    Full text link
    Within the frame of lowest-order perturbation theory, the van der Waals potential of a ground-state atom placed within an arbitrary dispersing and absorbing magnetodielectric multilayer system is given. Examples of an atom situated in front of a magnetodielectric plate or between two such plates are studied in detail. Special emphasis is placed on the competing attractive and repulsive force components associated with the electric and magnetic matter properties, respectively, and conditions for the formation of repulsive potential walls are given. Both numerical and analytical results are presented.Comment: 16 pages, 8 figures, minor correction

    Explicit Evidence Systems with Common Knowledge

    Full text link
    Justification logics are epistemic logics that explicitly include justifications for the agents' knowledge. We develop a multi-agent justification logic with evidence terms for individual agents as well as for common knowledge. We define a Kripke-style semantics that is similar to Fitting's semantics for the Logic of Proofs LP. We show the soundness, completeness, and finite model property of our multi-agent justification logic with respect to this Kripke-style semantics. We demonstrate that our logic is a conservative extension of Yavorskaya's minimal bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship of our logic to the multi-agent modal logic S4 with common knowledge. Finally, we give a brief analysis of the coordinated attack problem in the newly developed language of our logic

    Synchronous collecting duct carcinoma and papillary renal cell carcinoma: A case report and review of the literature

    Get PDF
    The coexistence of multiple and synchronous primary neoplasms in the same organ (including kidney) has only rarely been described in the literature. We herein present a case of collecting duct carcinoma (CDC) combined with papillary renal carcinoma (RCC) having a 57-month disease-free survival. CDC is a rather rare and aggressive neoplasm of the kidney. Sharing probably the same embryological origin, synchronous or metachronous association with in situ or papillary transitional cell carcinoma (TCC) may be found; association with RCC has been only once reported in the literature. The high incidence of c-erbB-2 oncogene amplification in CDC further characterizes this tumor as a separate entity from renal cell carcinoma, and shows some genetic characteristics in common with TCC. The histohgical diagnosis of Bellini CDC can be confirmed by the positive immuno-histochemical staining with a collecting duct marker and distal tubule marker and negative staining with a proximal tubule marker

    Single-vortex-induced voltage steps in Josephson-junction arrays

    Full text link
    We have numerically and analytically studied ac+dc driven Josephson-junction arrays with a single vortex or with a single vortex-antivortex pair present. We find single-vortex steps in the voltage versus current characteristics (I-V) of the array. They correspond microscopically to a single vortex phase-locked to move a fixed number of plaquettes per period of the ac driving current. In underdamped arrays we find vortex motion period doubling on the steps. We observe subharmonic steps in both underdamped and overdamped arrays. We successfully compare these results with a phenomenological model of vortex motion with a nonlinear viscosity. The I-V of an array with a vortex-antivortex pair displays fractional voltage steps. A possible connection of these results to present day experiments is also discussed.Comment: 10 pages double sided with figures included in the text. To appear in Journal of Physics, Condensed Matte

    Myosin V attachment to cargo requires the tight association of two functional subdomains

    Get PDF
    The myosin V carboxyl-terminal globular tail domain is essential for the attachment of myosin V to all known cargoes. Previously, the globular tail was viewed as a single, functional entity. Here, we show that the globular tail of the yeast myosin Va homologue, Myo2p, contains two structural subdomains that have distinct functions, namely, vacuole-specific and secretory vesicle–specific movement. Biochemical and genetic analyses demonstrate that subdomain I tightly associates with subdomain II, and that the interaction does not require additional proteins. Importantly, although neither subdomain alone is functional, simultaneous expression of the separate subdomains produces a functional complex in vivo. Our results suggest a model whereby intramolecular interactions between the globular tail subdomains help to coordinate the transport of multiple distinct cargoes by myosin V

    Casimir-Polder forces: A non-perturbative approach

    Full text link
    Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force components that are related to the electronic density-matrix elements at a chosen time. Even the force component associated with the ground state is not derivable from a potential in the ususal way, because of the position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent superposition of energy eigenstates, then temporally oscillating force components are observed, which are due to the interaction of the atom with both electric and magnetic fields.Comment: 23 pages, 3 figures, additional misprints correcte
    • 

    corecore