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Teachers may be attracted to the use of a game in a learning activity under 

the presumption that students will find the game experience to be more “fun” than 

typical classroom activities.  The use of a game in a learning activity should help 

students attain important learning outcomes and engage them in mathematical 

reasoning and sense making.  While most of the research attention has been devoted 

to digital learning games, multiplayer tabletop mathematics learning games afford 

unique opportunities (and challenges) to engage students in meaningful 

mathematical activity and discourse.     

Engle and Conant’s (2002) construct of productive disciplinary engagement is 

used to frame the notion of learner engagement with mathematical ideas during 

gameplay.  The expectancy-value theory of achievement motivation applied to the 

mathematics learning game context suggested a motivational construct called 

subjective gameplay-value that captures multiple reasons behind a student’s 

willingness to play a learning game, including both enjoyment and learning value.   



   

 

Two sets of principles are proposed, based on these theoretical frameworks 

and the game-based learning literature: 1) design principles to guide creation of 

games that engage students with important mathematical ideas while also 

motivating them to play, and 2) implementation principles to help teachers make 

effective use of multiplayer tabletop mathematics learning games as classroom 

learning activities and to facilitate mathematical discourse.   

The function representations card game Curves Ahead! was created using the 

design principles, and then playtested as part of a design experiment to refine the 

game.  Embedded in the game are mathematical tasks requiring students to connect 

and interpret multiple representations of functions.  Early playtests suggested 

which game features were impacting subjective gameplay-value.  After iterative 

refinements and modifications, the resulting game was playtested with differential 

calculus students to assess perceptions of its subjective gameplay-value.   

The calculus board game Assembly Lines was also created using the design 

principles.  Embedded in the game are tasks requiring graphical interpretation of 

derivatives, antiderivatives, and the Fundamental Theorem of Calculus.  Game 

sessions with calculus students were conducted using the implementation 

principles.  Video recordings of the sessions were analyzed to investigate how 

calculus students were productively engaging with mathematical ideas.  The results 

suggested that all students were engaged in mathematical reasoning and sense 

making during gameplay, and most students were making “intellectual progress.”  

The sessions also revealed potentially positive and negative impacts of participant 

interactions that have implications for teacher facilitation during gameplay.      
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Designing and Using Multiplayer Tabletop Mathematics Learning Games 

 

CHAPTER 1: INTRODUCTION AND OVERVIEW 

 

Game-based learning is a pedagogical strategy that uses games to help 

students attain important learning outcomes.  Typically, game-based learning 

activities have included students building games to learn, repurposing existing 

games, or playing a game that has been purposefully designed around specific 

learning outcomes (Van Eck, 2006).  Games designed around specific mathematics 

learning outcomes are called mathematics learning games or educational 

mathematics games.  This dissertation focuses on the design and implementation of 

multiplayer tabletop mathematics learning games.   

 

Much of the research in game-based learning has been focused on single-

player (Harteveld & Bekebrede, 2011) digital (video) learning games (Ke, 2011).  

Digital games are played on a console, computer, or mobile device.  Gee’s (2003) 

influential book, What Video Games Have to Teach Us About Learning and Literacy, 

outlines 36 learning principles that Gee believes are embodied by video games.  

Devlin used Gee’s principles (Devlin, 2011) in an ambitious project to create an 

exemplar for single-player digital mathematics learning games.  That exemplar 



2 

 

 

game is WuzzitTM,1 Trouble, designed for learning number sense, and investigations 

of its use have demonstrated the positive impact of video game learning in 

mathematics (Kiili, Devlin, Perttula, Tuomi, & Lindstedt, 2015; Pope & Mangram, 

2015). 

 

Mathematics learning games have potential for helping students attain 

important learning outcomes and meet mathematical content standards like those 

of The Common Core State Standards for Mathematics (CCSSM) (National Governors 

Association Center for Best Practices, 2010).  However, some mathematical practice 

standards imply that students need to interact as members of a mathematical 

learning community.  For example, if teachers seek to engage students in 

opportunities to “construct viable arguments and critique the reason of others” 

(Mathematical Practices Standard 3, CCSSM), then an activity that encourages 

student-student interaction and discourse around mathematical reasoning tasks 

will be particularly attractive.   

 

Multiplayer tabletop games (e.g., card games, board games, etc.) often involve 

many player-to-player interactions.  If game tasks are centered on mathematical 

sense making and reasoning, then the multiplayer tabletop format could provide 

special opportunities to support student-student interactions and engagement with 

                                                           
1 Wuzzit is a registered trademark of BrainQuake.  The use of this name does not imply any affiliation with 
or endorsement by BrainQuake. 



3 

 

 

important mathematical ideas.  In turn, these kinds of games also create 

opportunities for teachers to orchestrate productive mathematical discourse around 

students’ game experiences. 

 

How can a multiplayer tabletop game be designed to foster students’ 

productive engagement with mathematical ideas?  How can a teacher support 

student engagement during gameplay and facilitate productive mathematical 

discussions?  These are questions of mathematics learning game design and 

implementation that motivated this dissertation study. 

 

“Gamification” versus “game” 

 

Early research on games and learning emphasized isolating game features 

and elements that contributed to the “fun” and placing them in an educational 

setting to increase engagement and motivation.  This process became known as 

gamification, and it was perceived negatively by many who are passionate about 

playing and designing games.  Robertson (2010) prefers to call it “pointsification” 

due to the common practice of introducing points and referring to the result as a 

game.  Most implementations of gamification would not be recognized as games. 

 

So, what exactly is a game?  There is no consensus in the literature on a 

definition for game, but drawing on the important characteristics of games that 
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several authors have identified, the following is presented in the dissertation as a 

working definition.   

A game is a voluntary play activity in a pretended reality 
governed by rules, wherein the participant(s) try to achieve 
one or more goals, and where degrees of success in the 
attainment of goals are conveyed by a feedback system.     
 

 

The four defining characteristics of a game are: voluntary play activity, 

pretended reality governed by rules, adoption of goals, and progress conveyed by a 

feedback system. 

 

Theoretical framing: productive disciplinary engagement, expectancy-value 
theory 

 
 

To theoretically frame the notion of student engagement with mathematical 

ideas during a learning game, the dissertation uses Engle and Conant’s (2002) 

construct of productive disciplinary engagement.  The expectancy-value theory of 

achievement motivation (Eccles & Wigfield, 2002; Wigfield & Eccles, 2000) provides 

a useful lens with which to frame a student’s willingness and motivation to play a 

mathematics learning game.  The application of expectancy-value theory to the 

context of mathematics learning games resulted in a proposed motivational 

construct called subjective gameplay-value.  This construct is attractive because it 

can be used to capture multiple possible reasons behind a student’s willingness to 

play a mathematics learning game, including both enjoyment and learning value.   
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Overview of the three-paper model structure of the dissertation 

 

This dissertation uses the “three-paper model.”  Chapters 2, 3, and 4 are 

presented as three thematically related, but self-contained papers.   

 

Chapter 2 is the “principles” paper.  Two sets of principles for multiplayer 

tabletop mathematics learning games are proposed that are based on these 

theoretical frameworks and the game-based learning literature.  The first set of 

principles aims to guide the creation of games that engage students with important 

mathematical ideas while also motivating them to play.  The second set of principles 

is proposed in order to help teachers effectively use these kinds of games as 

classroom learning activities and to facilitate mathematical discourse about the 

game and its embedded mathematics.   

 

This attention to both sets of principles (design and implementation) was 

motivated by Dick and Burrill’s (2016) work on digital interactive mathematics 

learning technologies.  They also discuss both design principles for the creators of 

interactive digital environments for mathematics learning, as well as 

implementation principles for teachers to use those kinds of environments to 

support mathematical sense making and reasoning.  (Many of Dick and Burrill’s 

design principles could apply to digital mathematics learning games, since such 
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games can be viewed as a special case of an interactive mathematics learning 

technology envisioned by Dick and Burrill.)  

 

Chapter 3 is the “design experiment” paper.  The design principles of Chapter 

2 were used to create the function representations card game Curves Ahead!  The 

game was then playtested as part of a design experiment to refine and improve the 

game.  Mathematical tasks that require students to translate between multiple 

representations of functions in multiple contexts are embedded in the game.  Early 

playtests highlighted game features that were impacting subjective gameplay-value.  

After iterative refinements to improve Curves Ahead!, the final playtest involves an 

entire class of differential calculus students in playing the game to evaluate its 

subjective gameplay-value.   

 

Chapter 4 is a “gameplay interaction analysis” paper.  The design principles 

were used to create the calculus board game Assembly Lines, and then game sessions 

with calculus students were conducted using the implementation principles.  

Mathematical tasks requiring the graphical interpretation of derivatives, 

antiderivatives, and the Fundamental Theorem of Calculus are embedded in the 

game.  The study uses video recordings of the gameplay sessions to investigate how 

calculus students are engaging with mathematical ideas, and the extent to which 

that engagement might be productive.   
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Chapter 5, the dissertation’s final chapter, positions the dissertation’s 

contribution to the mathematics game-based learning literature.  Implications and 

discussion of each of the papers presented in Chapters 2, 3, and 4, follow.  Included 

in the final chapter is a presentation of a design process for developing multiplayer 

tabletop mathematics learning games.  The dissertation concludes with a discussion 

of directions for future research and mathematics learning game design efforts.  
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CHAPTER 2: DESIGN AND IMPLEMENTATION PRINCIPLES FOR MULTIPLAYER 
TABLETOP MATHEMATICS LEARNING GAMES 

 

Introduction 

 

Game-based learning (GBL) is the use of gameplay as a means for attaining 

desired learning outcomes (Plass, Homer, & Kinzer, 2015).  Educators may be 

attracted to the idea of game-based learning under the presumption that learners 

will be more “engaged” and will find the game experience “more fun” than typical 

classroom activities (Ke, Xie, & Xie, 2016; Kebritchi, Hirumi, & Bai, 2010; Plass et al., 

2015; Slussareff, Braad, Wilkinson, & Strååt, 2016; Wouters, Van der Spek, & Van 

Oostendorp, 2009; Wouters, Van Nimwegen, Van Oostendorp, & Van Der Spek, 

2013).   

 

In this paper, the focus is on game-based learning in mathematics, and a 

careful consideration of the nature of students’ engagement and interactions when 

playing a mathematics learning game.  When students report enjoyment from 

playing a mathematics learning game during class time, is that simply an indication 

that the activity was perceived as a welcome distraction from the usual classroom 

routine?  Was their “engagement” actually a diversion away from learning 

mathematics?  Or, as mathematics educators employing game-based learning would 

hope, did students genuinely engage with mathematical ideas on cognitive, affective, 
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or sociocultural levels (Plass et al., 2015) while they played a game intended to help 

them learn important mathematics?   

 

Digital learning games seem to be primarily played by an individual student 

(Harteveld & Bekebrede, 2011), and most of the research in game-based learning 

appears to have been devoted to these kind of digital games (Ke, 2011).  One 

particularly ambitions and notable effort in this arena is the design, development, 

and research on the digital mathematics learning game WuzzitTM Trouble (Kiili, 

Devlin, Perttula, Tuomi, & Lindstedt, 2015; Pope & Mangram, 2015).  

 

This paper devotes special attention to multiplayer tabletop mathematics 

learning games and the special opportunities they afford for significant interactions 

between players.  Two sets of principles are presented to support more effective use 

of game-based learning in mathematics.  One is a set of design principles to guide 

developers of multiplayer tabletop educational mathematics games.  The other is a 

set of implementation principles to assist teachers in effectively using such games as 

learning activities in the classroom setting.   

 

This attention to both design and implementation principles was motivated 

by Dick and Burrill’s (2016) work on digital interactive mathematics learning 

environments, in which they also discuss both design principles for the creators of 

such digital environments as well as implementation principles for teachers to use 
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such environments to support mathematical sense making and reasoning.  (Many of 

the design principles presented here could apply to digital mathematics learning 

games which, in turn, could be viewed as a special case of the interactive 

environments Dick and Burrill discuss.) 

 

Underlying both sets of principles, in this paper, is the use of Engle and 

Conant’s (2002) construct of productive disciplinary engagement to theoretically 

frame the notion of learner engagement with mathematical ideas during gameplay.  

The overarching goal of supporting and facilitating students’ productive disciplinary 

engagement in mathematics shaped the formulation of both the design and the 

implementation principles.   

 

The design principles are intended to guide the development of educational 

mathematics games that intrinsically involve students in mathematical tasks in 

ways that address not only mathematical content standards, but also mathematical 

practice standards (e.g., The Common Core State Standards for Mathematics, by 

National Governors Association Center for Best Practices, 2010).  The 

implementation principles are intended to provide teachers with guidance that 

supports many of the effective mathematical teaching practices suggested by the 

National Council of Teachers of Mathematics (NCTM, 2014).   
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The implementation principles are intended to provide teachers with 

guidance consistent with the effective mathematical teaching practices suggested by 

the National Council of Teachers of Mathematics (NCTM, 2014).  These 

implementation principles explicitly recognize the special role the teacher has in 

facilitating gameplay as a classroom activity, and the teacher’s orchestration of 

associated discourse with the players before, during, and after the gameplay 

activity.   

 

Before turning to detailed descriptions of the design and implementation 

principles, important background and terminology on games and game-based 

learning are discussed, and the theoretical framework underlying the principles is 

presented.   

 

Terminology of game-based learning 

 

There is no clear consensus on a definition of game (Plass et al., 2015; Salen 

& Zimmerman, 2004) and any description is unlikely to include all games (Adams, 

2010).  Salen and Zimmerman (2004) define a game as, “a system in which players 

engage in an artificial conflict, defined by rules, that results in a quantifiable 

outcome” (p. 80), but they acknowledge that this definition may not cover all games.  

Fullerton (2008) defines a game as “a closed, formal system that engages players in 

structured conflict and resolves its uncertainty in an unequal outcome” (p. 43), but 
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Fullerton also admits that this description may not fully capture the nature of 

games.  Adams (2010) offers this definition: “A game is a type of play activity, 

conducted in the context of a pretended reality, in which the participant(s) try to 

achieve at least one arbitrary, nontrivial goal by acting in accordance with rules” (p. 

3), but Adams calls his definition “nonrigorous” and “practical rather than complete” 

(p. 3).     

 

On the other hand, McGonigal (2011) defines games through “four defining 

traits: a goal, rules, a feedback system, and voluntary participation” (p. 21), and 

Koster (2013) simply states that “Games are puzzles to solve, just like everything 

else we encounter in life” (p. 34).   If the definitions offered above are not inclusive 

enough, one could argue that these two definitions are simply too inclusive, for they 

admit experiences that would not be considered games.  For example, enrollment in 

a four-year university would entail a goal, rules, a feedback system, and is voluntary, 

but would not normally be considered a game (except perhaps by analogy).     

 

For the purposes of the discussion in this paper, the operational definition of 

game proposed here includes the important elements of play activity and pretended 

reality described by Adams (2010) as well as the four traits emphasized by 

McGonigal (2011):  

A game is a voluntary play activity in a pretended reality 
governed by rules, wherein the participant(s) try to achieve 
one or more goals, and where degrees of success in the 
attainment of goals are conveyed by a feedback system.     
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There are four important characteristics of this definition: voluntary play 

activity, pretended reality governed by rules, adoption of goals, and progress conveyed 

by a feedback system.   

 

Voluntary play activity 

 

Participants willingly take part in the activities within a game, and the 

voluntary nature of playing a game differentiates it from “work.”  The cultural 

historian and anthropologist Johan Huizinga, in his influential book Homo Ludens: A 

Study of the Play Element in Culture (1938/1950) argues that play activities are 

inherently voluntary.  Caillois (1961), building on Huizinga’s work, suggests that 

forcing someone to play a game undermines the nature of play.  McGonigal (2011) 

writes that voluntary participation ensures that a game “is experienced as safe and 

pleasurable” (p. 21, emphasis in original).  

 

Note that the definition of game does not include a reference to “fun.”  

Huizinga (1938/1950) argues that “fun” itself cannot be properly defined, and no 

attempt is made here to define it.  Even in Raph Koster’s (2013) book A Theory of 

Fun for Game Design, the term “fun” itself is not defined.  Rather, Koster’s book is a 

treatise on the important characteristics of games that attract people to play them, 

i.e., what motivates voluntary play activity.   
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Pretended reality governed by rules 

 

The pretended reality is the game setting, situated in some play space (think 

of a gameboard or playing field or virtual setting on a computer screen), and a 

context within which the players take actions.  It is where “the players assign 

artificial significance to the situations and events in the game” (Adams, 2010, p. 5). 

 

The allowable player actions and their consequences within the pretended 

reality are governed by a set of rules.  In a multiplayer tabletop game, there is an 

understood agreement by the players to abide by the governing rules, and thus a 

necessity of a shared knowledge of these rules.  In contrast, a digital game enforces 

its own rules, and there are examples of such games where the players are expected 

to discover these rules through trial and error.       

 

Adoption of goals 

 

Participants accept or set goals while they play a game.  A careful distinction 

should be made between the learning outcomes that a game designer may have in 

mind in creating an educational game, and the game goals that arise during play, i.e., 

those determined by the pretended reality governed by rules.  A player could also 

set personal goals related to these game goals, such as doing better than a particular 
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opponent, or achieving a certain level or number of points (for example, a “personal 

best” score).     

 

Progress conveyed by a feedback system  

 

The role of the feedback system is to inform the player(s) of their actual, or 

potential for, progress toward attaining their goals.  Some examples of feedback are 

rewards, awards, points, access, resources, degrees of completion (e.g., progress 

bars, star-ratings, levels), and adjudication (the determination of whether a player’s 

action was within the rules).  In multi-player games, other players can be a source of 

feedback (e.g., through social standing, competition, or adjudication).   

 

Illustrating operational game characteristics with some well-known games 

 

Key characteristics of the operational definition of game are illustrated here 

using a few well-known examples, all of which are readily recognized as having a 

large following of voluntary players, so that aspect is not discussed.  The pretended 

reality governed by rules, the goals, and the feedback system in each example is 

discussed.     

 

Chess, in one form or another, is more than 1,000 years old.  In its present 

form, the pretended reality is that of two armies on a battlefield (an 8x8 checkered 
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grid in Western Chess) with scripted rules for allowable movement.  The goal is to 

threaten the opponent’s king with capture so that any legal move that king might 

make will cause an immediate capture the next turn (known as checkmate).  The 

feedback system has both qualitative and quantitative aspects: position and 

material.  Position refers to the placement of the pieces and a consideration of the 

overall configuration of the gameboard.  Players use board position to inform their 

strategy and take stock of the quality of each other’s play because it can be 

predictive of achieving the game goal (players that control more space have 

strategic and tactical advantage).  Material refers to the game pieces.  Capturing the 

game pieces of the opponent confers a material advantage, which can also give 

strategic and tactical advantages.  Both position and material can inform the player 

of progress toward their goal of checkmating the opponent’s king. 

 

Scrabble®,2 is a crossword boardgame that has players randomly draw tiles 

representing letters of the alphabet and place them on a gameboard to form words 

either horizontally or vertically.  The pretended reality is that of 2 to 4 

cruciverbalists competing to construct the most valuable words on a 15x15 grid of 

squares.  Each letter has a point value based on its frequency in allowable words of 

the designated dictionary (e.g., allowable words with the letter “q” are rare in 

English, so it is worth 10 points), and the gameboard contains squares that can 

                                                           
2 Scrabble is a registered trademark of Hasbro.  The use of this name does not imply any affiliation with or 
endorsement by Hasbro. 
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multiply the point value of a letter or the total value of the word formed.  The rules 

govern the placement of the words from an agreed upon dictionary by restricting 

tile placement to a single horizontal or vertical line on the grid so that a newly 

placed word must use one or more letters of a previously played word through at 

least one crossing or at least one adjacency.      

 

The goal is to earn more total points than the opponent(s), and the feedback 

system includes the point value of a word and the evolving state of the board via the 

words that have been placed.  The point values of all words placed by a single player 

are summed to compute a total score.  The player with the highest total score wins 

the game, so the point value of a word informs the player as to their potential for 

attaining the game goal.  The state of the board is a form of feedback because it 

either provides or constrains opportunities for future play.  The opportunity (or lack 

of opportunity) to play a high-value word informs the player of their potential for 

earning more points and the goal of attaining the highest total score.   

 

Jigsaw puzzles are a special kind of game under this working definition, 

because all three aspects are interconnected.  The goal is to reconstruct an image 

from a collection of its fragments.  The pretended reality is the collection of 

fragments that interlock uniquely to form the goal image and is governed by the 

requirement that the entire collection of fragments is to be placed so that they 

interlock exactly in order to perfectly reconstruct the entire goal image.  If two 
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pieces do not interlock exactly, if the entire goal image is not perfectly 

reconstructed, or if there are unused pieces, then the player knows that they have 

violated a rule and that they are also not making progress toward their goal.  Thus, 

the rules also form the feedback system.   

 

Super Mario Bros®,3 is a well-known video game where a player traverses an 

obstacle course that is sometimes within a maze (known as a platform video game).  

The pretended reality is that of a hero (usually Mario) chasing the enemy (Bowser) 

through a kingdom (Mushroom Kingdom).  The pretended reality is governed by the 

rules which permit the player to take certain actions (e.g., running and jumping) and 

move through the map along pre-defined paths.  The goal is to rescue a victim of 

kidnapping (Princess Toadstool) from the enemy (Bowser).  The feedback system 

includes coins, points, time, “lives,” and levels.  Coins convert to “lives,” which are 

the number of failures the player can have before having to start over.  Time forces a 

player to complete a level relatively quickly or pay with one of their “lives.”  The 

princess is at the end of World 8-4 (there are 8 levels called “worlds,” with 4 stages 

each).  The points are, strictly speaking, superfluous, but can be used to compare 

one player to another.  The primary feedback that informs a player of their progress 

toward the goal is in the completion of worlds and stages, but “lives” and time 

                                                           
3 Super Mario Bros. is a registered trademark of Nintendo of America, Inc.  The use of this name does not 
imply any affiliation with or endorsement by Nintendo of America, Inc. 
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inform the player about their potential for completing the stage that they are 

playing (a sub-goal).   

 

Game terminology relevant to design and implementation principles 

  

 With an operational definition of game in hand, other key terms are 

presented here for the purpose of the discussion of design and implementation 

principles for educational mathematics games. 

  

A digital (video) game is a game that is played on an electronic computation 

device, such as a console, computer, or mobile device.  Digital games for learning 

have usually been designed to be played by a single individual.   In most digital 

games the software itself enforces the rules of the game as well as provides 

immediate feedback to the player. 

 

A tabletop game is a game that is typically played on, or requires the use of, a 

flat surface.4  Examples might include board games or card games.  Tabletop games 

are usually designed to be played by two or more people and require an agreement 

by the players to abide by the game rules.  Feedback in a tabletop game often 

require player-player interactions and adjudication, and feedback may have a delay 

(e.g., after every player has completed their turn).   

                                                           
4 There have been examples of games that blur the distinction between digital and tabletop games. 
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An educational game is a game that is designed for the purpose of aiding in 

the attainment of specified learning outcomes, and an educational mathematics 

game is an educational game with mathematical learning goals.  The terms, 

educational math game, math game, mathematics game, mathematics learning game, 

and math learning game are all taken to be synonymous with educational 

mathematics game.  

 

A game designed for some purpose other than purely entertainment is called 

a serious game, so educational games are examples of serious games.  (A flight 

simulator or role-playing exercise in a business setting provide some examples of 

serious games.)  In arguing that serious games must be “fun,” Ravyse et al. (2017) 

“take the stance that serious games are successful if they get played (granted that 

the pedagogic infusion is decent) – fun games get played” (p. 50).  In a discussion of 

games as a participatory activity, Adams (2010) goes further by saying, “for a game 

to exist, it must be played; otherwise it is simply a theoretical abstraction” (p. 9).  

Hence, the value of an educational game is judged in part on students’ willingness 

and motivation to voluntarily play the game.   

 

Game mechanics are the structured actions within the pretended reality of 

the game that can occur between players, between the player(s) and the game, or 

internally to the game.  A player-to-player game mechanic might be an exchange of 



21 

 

 

resources, while a player-to-game mechanic might be the placement of a resource.  

A game mechanic which might be game-to-player is the allocation of a resource, 

while a game mechanic internal to the game might be the generation or instantiation 

of resources.  Game interactions, more generally, include game mechanics and other 

interactions of players with each other or the game.  For example, game interactions 

could also include adjudication, an exchange of information, or socializing.  The 

game world includes the players, the pretended reality, the rules, the goals, and the 

feedback system. 

   

To grok a game means to thoroughly comprehend every aspect of the game 

(Koster, 2013).  This is different from simply beating the game.  Grokking a game 

suggests a deeper structural understanding of the game.  Koster (2013) uses the 

example of Tic-Tac-Toe to illustrate the meaning of grok.  Tic-Tac-Toe can be 

enjoyable for young children, but there eventually comes a time when children 

“grok” the game and understand (implicitly or explicitly) that there is always a 

strategy that forces a draw.  At this point, Tic-Tac-Toe loses its appeal and is viewed 

as “boring.”   

 

Grokking a game could result in a player’s loss of interest in any further 

voluntary play, especially in an individually played digital game, and that could be 

viewed as undesirable from an entertainment game design perspective.  However, 

grokking an educational mathematics game could suggest that the player has 
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completely mastered the intended learning outcomes and is able to easily perform 

all the mathematics tasks that the game has to offer.  Such a result might not be 

viewed by a designer or a teacher as undesirable at all.  

 

A playtest refers to a designer-observed gameplay session, along with 

possible follow-up interviews or surveys of the players, for the purposes of 

evaluating the structure of the game and/or the perceptions of the players to the 

game.  Such playtests may involve content experts, teachers, or students 

representing the target audience.  The designer uses that feedback to determine the 

degree to which design goals have been achieved, and then modify accordingly.  

Playtesting is usually done as part of a cycle in which a game is refined between 

playtests.  Playtesting is no longer necessary when a game has achieved its design 

goals.   

   

Grounding the design and implementation of mathematics learning games in 
theory 
 

This paper discusses design principles for the development of educational 

mathematics games and implementation principles for the deployment of 

educational mathematics games in a classroom setting.  Many of these principles can 

apply to both individual player digital games and multiplayer tabletop games, but 

there are some very important distinctions to be made.   
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Multiplayer tabletop educational games give rise to player-to-player 

interactions and discourse, and when used in the classroom setting, there can also 

arise player-to-teacher interactions and discourse.  These interactions and 

discourse can have significant impacts on players’ opportunities for learning and for 

their engagement with mathematical ideas.  The special affordances for such 

interactions offered by multiplayer tabletop educational games also pose special 

challenges in design and in effective implementation as a classroom activity, and the 

principles attempt to address those challenges.   

 

The theoretical grounding of the design and implementation of an 

educational mathematics game should provide an appropriate framing for how the 

gameplay activity both supports students meeting intended mathematics learning 

outcomes and enhances students’ interest in playing the game.  The discussion that 

follows situates the proposed principles for design and implementation within a 

framework for supporting productive disciplinary engagement in mathematics as 

described by Engle and Conant (2002).  The voluntary play activity aspect of 

educational mathematics games is viewed through the lens of expectancy-value 

theory of achievement motivation described by Wigfield and Eccles (2000), and this 

is used to frame the discussion of enhancing students’ interest in voluntarily playing 

an educational mathematics game.   
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There is increasing interest in moving from questions of efficacy in game-

based learning, to questions of designing for learning outcomes (Gaydos, 2015; Ke et 

al., 2016) and implementation in the classroom (Gaydos 2015; Van Eck, 2006; 

Westera, 2015).  Plass et al. (2015) suggest designing learning games around 

cognitive and affective engagement.  Considering students’ productive disciplinary 

engagement in mathematics during game play affords a useful way of evaluating 

students’ cognitive engagement, and expectancy-value theory can provide insights 

into students’ affective engagement.   

 

Fostering productive disciplinary engagement in mathematics 

   

Engle and Conant (2002) pose principles for fostering productive 

disciplinary engagement, and these overlap with principles of fostering 

communities of learners (FCL) because Engle and Conant’s “principles were 

developed in the course of analyzing an FCL case” (p. 406).  Principles for FCL are 

rooted in guided discovery (Brown, 1997; Brown & Campione, 1994), which has 

been argued to be a useful learning theory for game-based learning (Slussareff et al., 

2016).  The construct of productive disciplinary engagement shapes both the design 

and implementation principles.  It also provides a useful lens for the analysis of in-

game communication and discourse, an area of game-based learning research that is 

undeveloped (Wouters et al., 2009).   
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Engle and Conant (2002) have used the constructs of engagement, 

disciplinary engagement, and productive disciplinary engagement in detailed 

descriptive analyses focused specifically on student discourse (including nonverbal 

communication).  The constructs appear well-suited for characterizing not only the 

discourse between players, but also other kinds of interactions arising during the 

play of an educational mathematics game.   

 

For example, Engle and Conant (2002) describe engagement as a focused and 

active participation in the present discourse.  The present use of that term will 

mean, “a focused and active participation in the present (game) activity.”  They 

describe disciplinary engagement as “contact between what students are doing and 

the issues and practices of a discipline’s discourse” (p. 402), while the present use 

will be “contact between what students are doing and the issues, practices, or 

discourse of a discipline,” retaining the quality of the original description while also 

slightly generalizing it.  And Engle and Conant (2002) go on to say that disciplinary 

engagement is productive for participants if “they make intellectual progress” (p. 

403).  Similarly, in the present discussion, productive disciplinary engagement will 

mean that the participants are making intellectual progress during or through their 

disciplinary engagement.  In this paper, the discipline is understood to be 

mathematics.  (As such, the name could easily be changed to productive mathematics 

engagement.)   
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 Engle and Conant (2002) posit four principles that foster productive 

disciplinary engagement: problematization, authority, accountability, and resources.  

A description of each principle follows, along with implications for game design.      

 

Problematization 

 

 Engle and Conant (2002) say, “the core idea behind problematizing content is 

that teachers should encourage students’ questions, proposals, challenges, and other 

intellectual contributions, rather than expecting that they should simply assimilate 

facts, procedures, and other ‘answers’” (p. 404, emphasis in original).  The original 

conception of problematization provided by Hiebert et al. (1996) is more specific to 

mathematics and is the basis for Engle and Conant’s more general definition: 

“students should be allowed and encouraged to problematize what they study, to 

define problems that elicit their curiosities and sense-making skills” (p. 12).  

Combining these, it can be said that students should be encouraged to define their 

own tasks and problems, as well as question, propose, and challenge relevant (or 

possible) mathematical facts, procedures, and solutions. 

 

Hiebert et al. (1996) consider reflective inquiry as conceived by Dewey 

(1933, cited in Hiebert et al., 1996) to be a chief component of problematization and 

problem solving.  They describe three features of reflective inquiry: problem 

identification, searching for a resolution, and reaching conclusions.  Problem 
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identification occurs when “the participant sees a quandary or feels a difficulty or 

doubt that needs to be resolved” (Hiebert et al., 1996, pp. 14 – 15), and the search 

for a resolution commences once the problem is identified.  The search for a solution 

to the problem requires activity and “overt doing,” while the participant “[calls] up 

and [searches] out related information, [formulates] hypotheses, [interacts] with 

the problem, and [observes] the result” (Hiebert et al., 1996, p. 15).  The participant 

then reaches some conclusion, even if only temporary or partially refined.  

“Eventually some conclusion is reached, some resolution is achieved, some 

hypotheses are refined. The outcome of the process is a new situation, and perhaps 

a new problem, showing new relationships that are now understood” (Hiebert et al., 

1996, p. 15).   

 

Implications for game design: An educational mathematics game that 

supports problematization and reflective inquiry would encourage and allow 

players to formulate goals that are essentially self-posed mathematical problems, as 

well as allow them to devise their own strategies to achieve those goals.  Such a 

game would permit the player to explore some space of possibilities and make their 

own reasoned conclusions about the efficacy of their problem-solving strategies.   
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Authority 

 

 Engle and Conant (2002) hold that students should be given authority to 

solve problems by “having an active role, or agency, in defining, addressing, and 

resolving [those] problems” (p. 404).  In addition to agency, students should be 

positioned as stakeholders, contributors, and potential local experts (Engle & 

Conant, 2002).  To give authority to students means “that the tasks, teachers, and 

other members of the learning community generally encourage students to be 

authors and producers of knowledge, with ownership over it, rather than mere 

consumers of it” (Engle & Conant, 2002, p. 404). 

 

 Implications for game design: A mathematics learning game that enables 

player creativity and agency would be supporting authority.  Such a game would 

provide the player ample opportunity to make mathematically purposeful choices 

and employ their creativity while problem-solving.   

 

Accountability 

 

 Students should not be given complete authority, but their “intellectual 

work” should be “made accountable to others and to disciplinary norms” (Engle & 

Conant, 2002, p. 401).  This means that the participant’s “intellectual work is 

responsive to content and practices established by intellectual stakeholders inside 
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and outside their immediate learning environment as well as to relevant 

disciplinary norms” (Engle & Conant, 2002, p. 405).  To Engle and Conant (2002), 

this accountability is internal to the learning environment, having less emphasis on 

external standards and assessment.   

 

 Implications for game design: While rules are an obvious way that games 

support accountability, so too would an adjudication process which involves the 

players.  Such an adjudication process would encourage the justification of 

mathematical reasoning as part of the gameplay.   

 

Resources and support 

 

 Engle and Conant (2002) argue that resources and support for learners are 

for both productive disciplinary engagement and “embodiment of the other 

principles” (p. 405).  They offer some examples that include time for deep 

investigations of a problem, access to information or disciplinary experts, 

scaffolding, models and norms of appropriate engagement and activity, and “public 

forums for student work” (p. 406).   

  

Implications for game implementation: In the context of game-based learning, 

the description of resources and support suggest a role for the teacher in facilitating 

productive disciplinary engagement during the gameplay.  This facilitation might 
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include providing feedback, assisting with adjudication, clarifying or explaining 

rules, and management of interaction dynamics.  In gameplay, interaction dynamics 

can take the form of player(s)-with-player(s) and player(s)-with-game.   

 

One example of a player-with-player interaction that may require oversight 

and careful management is that of an alpha gamer.  An alpha gamer is one that seeks 

control over the behaviors and actions of other players, especially during 

cooperative gameplay.  The participant subjected to the alpha gamer’s pressures 

may find that their authority, for example, is being usurped by the alpha gamer.  In 

this case, the teacher may need to provide a balancing interaction that restores the 

authority of the player(s) affected by the alpha gamer.   

 

An example of a player-with-game interaction that may require intervention 

is that of an exploit.  An exploit occurs when the player discovers a way to 

circumvent the intended routes to achieve the given game goal(s).  In an educational 

mathematics game, this would represent a player achieving a game goal (solving a 

mathematical problem) without engaging in the relevant mathematics.  The 

availability of an exploit can be viewed as a design flaw, but if the exploit is 

discovered in the classroom implementation of the game as an activity, then the 

teacher may impose some additional rule that effectively blocks the exploit.     
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Expectancy-value theory of achievement motivation 

 

Expectancy-value theory has been recognized as a possible framework for 

studying motivation in game-based learning (Ke, 2011; Plass et al., 2015; Zusho, 

Anthony, Hashimoto, & Robertson, 2014), and it provides the language used here to 

describe and explain the interest learners might have in playing a mathematics 

learning game.  Expectancy-value theory attends to two important (self-directed) 

questions that speak to voluntary participation for mathematics learning games: 

“Can I do it?” and “Do I want to do it?”   The theory appears well-suited to game-

based learning design and implementation and outlines multiple dimensions along 

which the answers to those questions are answered by the player.   

 

Can I do it? is a question answered based on the learner’s expectancy, which 

Wigfield and Eccles (2000) describe as the combination of the learner’s ability 

beliefs about their competence to do a given task and outcome expectancies, the 

learner’s beliefs about the likely outcome if they attempt a task.  While these are 

technically different, Eccles and Wigfield (2002) point out that “in real-world 

achievement situations they are highly related and empirically indistinguishable” (p. 

119).  Some have argued that a game can be used to provide a space in which a 

participant feels safe to explore the boundaries of what they can do (e.g., Gee, 2003; 

McGonigal, 2011).   
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Do I want to do it? weighs three dimensions of achievement values, or 

subjective task-values (Eccles & Wigfield, 2002; Wigfield & Eccles, 2000) for 

engagement in an activity against the perceived cost of that engagement.  The three 

dimension of subjective task-values are attainment value (personal importance of 

succeeding at the task or activity), intrinsic value (enjoyment gained from doing the 

task or activity), and utility value (usefulness of the task or activity in attaining 

goals).  The cost refers to negative results and trade-offs for performing the task or 

activity.  Costs might include fear of failure or success, anxiety, effort, and lost 

opportunities to engage in other activities (Eccles & Wigfield, 2002).   

 

As discussed above, reasons that a person might want to play a mathematics 

learning game include enjoyment, learning value, or beating the game.  The 

dimensions of subjective task-value align well with these reasons.  Enjoyment of the 

game aligns with intrinsic task value, learning value aligns with utility value, and 

beating the game aligns with attainment value.  (In a multiplayer game, the 

opportunity to socialize or collaborate could increase the subjective task-value on 

one or more of these dimensions.) 

 

Implications for game design: The voluntary play dimension of a learning 

game distinguishes it from other learning activities.  A learning game designer seeks 

to address desired learning outcomes through creating a pretended reality with 

rules, goals, and a feedback system that foster productive disciplinary engagement 
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during gameplay.  In addition, the learning game designer should attend to game 

elements that can increase student interest and motivation to play the learning 

game, what could be called its gameplay-value.  Expectancy-value theory suggests 

that enhancing a player’s perception of the gameplay-value of a learning game 

involves more than just increasing its perceived “entertainment” value.  The 

perceived value of the disciplinary engagement activity itself and the expectations of 

achieving learning outcomes could also contribute to gameplay-value.    

  

Background for design and implementation principles 

 

Dick and Burrill (2016) provide five design principles and five 

implementation principles for the development and use of dynamic interactive 

mathematics technologies to support the learning of mathematical concepts.  Digital 

educational mathematics games, being one form of dynamic interactive 

mathematics technology, can certainly leverage these principles, but a case can also 

be made for their applicability to tabletop games.  Their design principles support 

conceptual learning in mathematics by ensuring the technology tool allows a 

student to take mathematically meaningful and deliberate actions that lead to 

mathematically meaningful consequences, while maintaining faithfulness to the 

mathematics (factually and as perceived by the student).  Dick and Burrill’s 

implementation principles support teachers in their use of mathematics technology 

tools to engage students in sense-making, reflection, and inquiry.   
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Dick and Burrill’s design principles for dynamic interactive mathematics technologies 

 

A dynamic interactive mathematics technology would be a tool that provides 

immediate feedback in response to user actions in a mathematical scenario (Dick & 

Burrill, 2016).  The immediacy stems from its dynamic nature, the feedback from its 

interactivity, and the mathematical scenario from it being a mathematics 

technology.  A multiplayer tabletop mathematics learning game is neither dynamic 

nor interactive in the sense that Dick and Burrill (2016) use those words, but their 

principles for technology-based environments offer striking parallels to games.  A 

clear emphasis in their design principles is that the user (player) should be allowed 

to engage in mathematically meaningful and deliberate (game) actions with 

mathematically meaningful (game) consequences in a mathematical (game) 

scenario.  This is restated for emphasis in the context of designing mathematical 

learning games:  

The design of multiplayer tabletop mathematics learning 
games should allow students to take mathematically 
meaningful and deliberate actions that have mathematically 
and situationally meaningful consequences. 
   

 

The five design principles proposed by Dick and Burrill (2016) are listed 

here:   
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1. Action-Consequence Principle: The learner has an opportunity to 

take a mathematically meaningful action that leads to an immediately 

perceptible consequence that is mathematically meaningful.   

2. Purposefulness Principle: The learner has an opportunity to take 

actions motivated by mathematical intentions and purpose.  

3. Sandbox Principle: The learner should be guarded against the 

possibility of arranging the virtual objects in a way that has no 

mathematical meaning, as well as from extraneous and irrelevant 

aspects of the technology (e.g., software-specific syntax).   

4. Mathematical Fidelity Principle: The virtual environment remains 

faithful to the mathematics. 

5. Cognitive Fidelity Principle: The virtual environment remains 

faithful to the learner perceptions of the mathematics.   

 

 

The mathematical and cognitive fidelity principles ensure that the technology 

tool remains faithful to both the mathematics and the learner’s perception of the 

mathematics, respectively.  Dick and Burrill (2016) point out that technology is 

sometimes limited mathematically (e.g., numerical precision), but mathematical 

errors or ambiguities and sloppiness in language and notation must be avoided.  

Cognitive fidelity refers to presentations that are mathematically correct but 

misleading in some way.  They provide the example of a screen display of 

perpendicular lines graphed correctly, but the displayed coordinate system has 

visually different scales on the horizontal and vertical axes.  In this case, these lines 

could be perceived as not perpendicular.   
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Design principles for multiplayer tabletop mathematics learning games 

 

 The design principles presented in this section are intended to guide the 

development of multiplayer tabletop educational mathematics games that create 

opportunities for, and support, productive disciplinary engagement in mathematics 

as described by Engle and Conant (2002).  Table 1 lists the ten design principles for 

multiplayer tabletop mathematics learning games. 

Table 1: The design principles for multiplayer tabletop mathematics learning games. 

Mathematical Fidelity Principle A mathematics learning game should be faithful to 
the mathematics, being free of errors, ambiguities, 
and sloppiness. 

Cognitive Fidelity Principle A mathematics learning game should be faithful to 
the mathematics as perceived by a player. 

Embedding Principle Each mathematical task in a mathematics learning 
game should be embedded in a way that elicits the 
formulation of a mathematical problem statement by 
the player, without the need to overtly indicate the 
task to the player.   

Rules Principle The rules of a mathematics learning game should be 
simple, clearly stated, consistent, and perceived as 
fair by the players.  

Adjudication Principle A mathematics learning game should provide error-
free, simple, and fair judgment of player actions. 

Reward System Principle Every mathematical task in a mathematics learning 
game should have a reward associated with its 
successful performance and a minimal cost 
associated with its unsuccessful performance.   

Discovery & Reflection Principle Feedback provided by a mathematics learning game 
should stimulate discovery and reflection, and it 
should not be provided through overt telling.  

Variety Principle A mathematics learning game should provide many 
opportunities for its players to learn through 
engagement with important mathematical ideas that 
contribute to the attainment of the intended learning 
outcomes. 

The Virtuous Cycle Principle A mathematics learning game should give a player 
meaningful control to make consequential choices 
that brings their creativity to bear.  Success should 
yield more (or different kinds of) meaningful control.   

Flow Principle A mathematics learning game should immerse each 
player in a flow experience that sustains the player’s 
engagement in game-based mathematical activities 
throughout the duration of the game. 
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The first seven design principles for mathematics learning games relates to 

one of three defining aspects of game: goals, pretended reality with rules, and 

feedback system.  The last three design principles support the defining aspect of 

voluntary participation by enhancing the subjective value of the gameplay 

(henceforth, “subjective gameplay-value”).     

 

Faithfulness to the mathematics: Mathematical and Cognitive Fidelity 

 

A mathematics learning game has game goals that are aligned with 

mathematics learning outcomes.  The fidelity principles support productive 

disciplinary engagement by helping to ensure that the game acts as a reliable 

resource for mathematics learning and engaging with mathematical ideas. 

 

Mathematical Fidelity Principle: A mathematics learning 
game should be faithful to the mathematics, being free of 
errors, ambiguities, and sloppiness.   

 

Dick and Burrill (2016) make the case for faithfulness to the mathematics as 

an essential design principle for dynamic interactive mathematics technologies, and 

that rationale extends naturally to educational mathematics games, both digital and 

tabletop.  Inaccurate or misleading representations of mathematical facts, rules, 

processes, structures, or concepts presented within a mathematics learning game 

could obviously have undesirable effects on a player’s mathematical learning.     
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Cognitive Fidelity Principle: A mathematics learning game 
should be faithful to the mathematics as perceived by a 
player.   

 

Bos (2009) refers to cognitive fidelity as meaning “the math object makes 

sense and fits into a memorable schema befitting the concept” (p. 111) and adds, 

“cognitive fidelity enables one to make connections by seeing developing patterns” 

(p. 112).  Adherence to cognitive fidelity can be more nuanced than simply ensuring 

mathematical correctness.  For example, the individual mathematical tasks arising 

repeatedly in a learning game could be presented correctly mathematically, but 

suggest a false pattern or a solution strategy that works locally (within in the game) 

but does not generalize adequately.   

 

Situating mathematical activity within the game: the embedding principle 

 

Embedding Principle: Each mathematical task in a 
mathematics learning game should be embedded in a way 
that elicits the formulation of a mathematical problem 
statement by the player, without the need to overtly 
indicate the task to the player.   

 

A math learning game should embed (or situate) the mathematics within the 

game by using the game’s pretended reality and mechanics so that important 

actions in the game require the use of mathematical reasoning.  Ke et al. (2016) 

argue that learning “should be necessitated as a component of core game actions 
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and/or rules” (p. 1198).  This notion has variously been called “intrinsic integration” 

(Habgood & Ainsworth, 2011), “gameplay-situated learning content” (Ke et al., 

2016), and “situated action” (Lameras, Arnab, Dunwell, Stewart, Clarke, & Petridis, 

2017).  The underlying idea in all cases is that the game should present situations 

that are “natural” to the game world, but also cause the player to use mathematical 

reasoning in a meaningful way.  In writing about mathematics learning games, 

Devlin (2011) says,  

“the math should arise naturally… It should not stand out as 
something that does not fit, a mere hurdle to overcome; rather, it 
should seem perfectly natural to the player… in order to complete the 
task at hand.” (p. 139)   

 
In their description of intrinsic integration, Habgood and Ainsworth (2011) say that 

Intrinsically integrated games embody the learning 
material within the structure of the gaming world and the 
player's interactions with it, providing an external 
representation of the learning content that is explored 
through the core mechanics of the gameplay.  (p. 173) 
 

 

Nicholson (2011) extends this notion of intrinsic integration and then applies 

it to tabletop learning games.  He argues that “to create these games, the first design 

constraint is: ‘Do not ask questions.’  Instead, the design goal is to locate the game 

within the content” (p. 62).  To Nicholson, the presence of mathematics “questions” 

makes the mathematics tasks “mere hurdles”, as Devlin (2011) might say.  This 

should not be construed as, “remove the questions” by employing grammatic 

reformulations that avoid question marks.  Rather, the intent is to elicit the 

formulation of the mathematical tasks and problem statements from the player 
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through their gameplay.  The game should not directly ask questions or pose 

problem statements, nor should the game overtly tell the player the mathematical 

tasks to perform.  The embedding or situating of mathematics in a learning game 

supports productive disciplinary engagement through problematization and the 

first stage of reflective inquiry described by Hiebert et al. (1996).   

 

Successful embedding of the mathematics learning content within a game’s 

pretended reality relies on the game mechanics mapping to mathematical concepts 

or tasks.  Bright et al. (1985) suggest using Bloom’s taxonomy (Bloom, Englehart, 

Furst, Hill, & Krathwohl, 1956) for the cognitive domain to classify the complexity of 

mathematical tasks in a math learning game, and Kapp (2013) provides an 

alignment of learning objectives classified by Bloom’s revised taxonomy for the 

cognitive domain with game activities/mechanics (adapted in Table 2).  

 

Table 2: Adapted from Kapp (2013) 

Cognitive 
Process 

Associated Verbs Sample Game Activities 

Remember Define, Duplicate, List, Memorize, Recall, 
Repeat, Reorganize 

Matching, Collecting 

Understand Classify, Identify, Locate, Recognize, Report, 
Select, Interpret, Exemplify, Summarize, 
Infer, Compare, Explain 

Puzzle solving, exploring 

Apply Demonstrate, Dramatize, Employ, Illustrate, 
Operate, Schedule, Sketch, Solve, Use, 
Execute, Implement 

Role playing 

Analyze Compare, Contrast, Differentiate, 
Discriminate, Distinguish, Examine, 
Experiment, Question, Organize, Attribute 

Allocating resources 

Evaluate Appraise, Argue, Defend, Judge, Select, 
Support, Value, Evaluate, Critiquing, 
Checking 

Strategy 

Create Assemble, Construct, Create, Design, 
Develop, Formulate, Write, Generate, Plan, 
Produce 

Building, Building your own game 
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Keep the game simple and fair: the rules principle 

Rules Principle: The rules of a mathematics learning game 
should be simple, clearly stated, consistent, and perceived 
as fair by the players.   

 

Unlike a digital learning game, in which rules can be delivered through a 

tutorial or discovered through interacting with the environment (Adams, 2010; 

Fullerton, 2008), a tabletop game requires each player to know, understand, and 

agree to the rules before play begins.  To enable knowledge and understanding of 

the rules, they should be stated as clearly and simply as possible (Adams, 2010; 

Fullerton, 2008).  Ambiguity and “gray areas” should be avoided, and the rules 

should be internally consistent (Adams, 2010).  Rules that are complicated or 

unclear may hinder the players from making meaningful gameplay choices and the 

players may perceive less control (Fullerton, 2008).  Mathematics learning games 

have specific mathematics learning outcomes.  Complicated game rules that are not 

necessary to enforce disciplinary norms can add unnecessary cognitive demand on 

the players that detract from more productive disciplinary engagement in the 

mathematics.   

 

Players need to perceive the rules as fair (Adams, 2010; Fullerton, 2008).  

Adams (2010) points out that perceptions of fairness are dependent on individual 

players and cultural norms, but he adds, “for all players to enjoy a game, they must 

all be in general agreement about what constitutes fair play” (p. 12).   
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Rules also serve to govern the pretended reality by providing constraints 

that motivate creative strategies (McGonigal, 2011) and imparting meaning to the 

objects and activities in the pretended reality (Adams, 2010).  Rules in a tabletop 

math learning game should provide players with the necessary constraints so that 

interactions with the mathematical objects that do not have mathematical meaning 

are disallowed or judged as erroneous play.  The constraints should also motivate 

creative problem-solving strategies and help to enforce the appropriate 

mathematical meaning of the objects and actions in the game.   

 

Producing a rule set with the above characteristics will enable players to be 

responsive to disciplinary norms and each other’s performance on mathematical 

tasks.  Supporting accountability in this way will be enhanced if the math learning 

game adheres to the embedding principle.  If the mathematical content is embedded, 

then the rules will either have mathematical meaning or the rules will help players 

enforce mathematics norms and rules during gameplay.   

 

Feedback principles: adjudication, reward system, and discovery and reflection 

 

Feedback provides information to the players that conveys actual and 

potential progress toward their goals.  In turn, this information supports productive 

disciplinary engagement in mathematics by enabling the game to act as a resource 
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for its player-learners.  Whatever choices are made for the feedback forms (e.g., 

points, badges, levels, etc.) are not of concern here.  Instead, the design principles 

seek to create a feedback system that is situated and used within the game to 

support productive disciplinary engagement in mathematics.   

   

Adjudication Principle: A mathematics learning game should 
provide error-free, simple, and fair judgment of player 
actions.   

 

Correct play in a digital learning game would have the advantage of 

immediate enforcement provided by the machine.  Tabletop learning games, 

however, require the players to adjudicate play for (and between) themselves 

(usually with a delay).  Like rules, this process should be clear, simple, and fair.  The 

feedback to the player should come as quickly as is reasonable.  In the case of a 

tabletop game, this might mean the end of a turn or the end of a round.  To provide 

the teacher flexibility in how they use their time to support learners during 

gameplay, most tabletop math learning game should provide a means for the players 

to adjudicate without the need for the teacher.  However, some game designs could 

be played by the entire class or in large groups, which may admit teacher 

adjudication as the primary means of judging correct play.  

 

Advantages of incorporating a challenge-defense mechanic: A multiplayer 

tabletop math learning game has a unique affordance in that a player can be put in a 

position to act as a contributor of knowledge and an enforcer of mathematics as a 
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discipline during the adjudication process.  These types of games can have a 

challenge-defense mechanic which incentivizes players to challenge incorrect plays 

or defend themselves from erroneous challenges made by other players.  A 

successful challenge or defense could result in an associated reward and/or a loss to 

the players involved.  The incentive embeds the challenge-defense related actions 

within the pretended reality so that players do not perceive it as a mathematical 

task that exists outside the gameplay.  Recommendation for the incentive to be 

present for both players in the exchange is to demotivate players from posing 

baseless challenges and to keep the game moving.   

 

The ideal challenge-defense mechanic has players engaging in constructing 

mathematical arguments and responding to the reasoning of other players (MP3. 

mathematical practice standard 3 from The Common Core State Standards by 

National Governors Association Center for Best Practices, 2010).  In a discussion of 

representations, patterns, and communication in mathematics learning, Goldin 

(2002) posits, “mathematical power consists not only in being able to detect, 

construct, invent, understand, or manipulate patterns, but in being able to 

communicate these patterns to others” (p. 213).  The challenge-defense mechanic is 

a unique affordance of multiplayer tabletop math learning games and can support 

productive disciplinary engagement through authority and accountability.  This 

mechanic can help learners become “authors”, “contributors”, and “owners” of their 
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mathematics knowledge, and it can enable a learner’s responsiveness to 

mathematics content and practices.  

 

Reward System Principle: Every mathematical task in a 
mathematics learning game should have a reward 
associated with its successful performance and a minimal 
cost associated with its unsuccessful performance.   

 

Incorporating a system of balanced rewards and costs into a game is an 

essential game design practice (Adams, 2010; Fullerton, 2008; Koster, 2013; Salen & 

Zimmerman, 2004).  Koster (2013) says that the minimum amount of cost would be 

opportunity cost, which is better than no cost at all.  Fullerton says that only a small 

amount of cost is necessary, and that cost provides meaning to the choices that a 

player makes.   

 

There may be rewards and costs in addition to those related to performance 

of mathematical tasks.  To provide more depth to the gameplay, most of the rewards 

should have an impact on future play or help a player reach a goal (Fullerton, 2008).  

Adams (2010) argues that all costs need to have a counterbalancing reward, or 

there is no reason to take the risk.  To maintain a general sense of fairness, rewards 

and costs should match the difficulty (Adams, 2010) of the mathematics tasks.   

 

McGonigal (2011) points out that roughly 80% of gameplay time is spent 

failing, and that players enjoy the gameplay with the in-game failures if they 
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perceive a game as fair and the goals as attainable.  McGonigal argues that enjoyable 

failures in game are often accompanied by what she calls, positive failure feedback.  

Such feedback is perceived to be interesting, is provided immediately, causes 

positive feelings (sometimes even a smile), and provides a player with a stronger 

sense of agency and optimism.  It is this kind of risk, a cost accompanied by 

interesting and enjoyable feedback, that seems wholly appropriate for a 

mathematics learning game.   

 

A feedback system which associates rewards and costs with performance of 

the mathematics tasks in the game can provide a resource to the learner by being a 

source of information that conveys learning progress.  Such a feedback system can 

also support productive disciplinary engagement in mathematics through 

accountability, by positioning a participant’s gameplay as “intellectual work [that is] 

responsive to content and practices” (Engle & Conant, 2002, p. 405) within the 

learning environment (the game) and the discipline.  Mathematics tasks that are 

without associated rewards or costs will not connect a player’s actions in the game 

to the discipline in such a way as to make the player “responsive” to mathematics.  

Instead, those mathematical tasks may be perceived as separate from the gameplay.   

 

Discovery & Reflection Principle: Feedback provided by a 
mathematics learning game should stimulate discovery and 
reflection, and it should not be provided through overt 
telling.   
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Feedback should be meaningful (Dick & Burrill, 2016; Fullerton, 2008), and it 

should stimulate reflection and discovery without overt telling (Gee, 2003).  In 

digital games, messages from the game providing mathematical instruction to the 

player may reduce the quality of the play experience (Wouters, et al., 2013), and 

players have been found to generally ignore feedback in the form of post-play 

summary or messages providing educational content that appear between levels 

(Ke et al., 2016).  These findings suggest that overt mathematical instruction as part 

of the feedback mechanism in a tabletop math learning game may be viewed as 

disruptive to the game and could possibly be ignored by players.   

 

A common way that games stimulate reflection is through meaningful 

consequences of failing the game task (for example, trying and failing with a cost can 

lead a player to update their strategy).  If the player wants to achieve the game 

goal(s), they will reflect on failures (Gee, 2003).  To leverage this style of feedback to 

support mathematics learning, the mathematics tasks should be embedded so that 

failure of the game task constitutes unsuccessful performance of the mathematics 

task.   

 

Games can encourage players to make their own discoveries through 

experimentation (Gee, 2003).  A common way that games encourage discovery is 

through providing players the opportunity to try various strategies.  In a tabletop 

mathematics learning game, this could involve giving players time to explore and try 
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different strategies before proposing that their solution be judged.  This is different 

from a player being allowed to take back a “move.”  For example, if there are game 

pieces whose movement or placement have mathematical meaning, then players 

could be permitted (and encouraged) to try different movements and placements 

without being judged and without those trials being considered their “move” or 

their turn.  This kind of exploration could help a learner see their mathematical 

ideas manifested in the play space.  After deciding a final position, the player could 

inform the others that they are ready to have their “move” judged.  If players 

advancing in skill come to view that kind of behavior as unfair, they may adopt 

stricter rules amongst themselves (Adams, 2010).   

  

Supporting voluntary participation and enhancing subjective gameplay-value: variety, 
the virtuous cycle, and flow 
 

The notion of subjective task-value provided by the expectancy-value theory 

of achievement motivation is a useful way of describing possible reasons for 

voluntary participation in a mathematics learning game.  The components of 

subjective task-value are attainment value, intrinsic value, and utility value, weighed 

against the cost of performing the task (Eccles & Wigfield, 2002; Wigfield & Eccles, 

2000).  For example, a student might play a math learning game voluntarily because 

they want to overcome all its challenges (attainment), they think it is enjoyable 

(intrinsic value), or they view it as a useful resource for learning mathematics 

(utility).  In the context of learning games, this could be called its subjective 
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gameplay-value.  Note that the evaluation of a game’s subjective gameplay-value 

would necessarily involve actual playtesting of the game with a sample of the 

intended audience of players. 

 

Expectancy-value theory also provides a framing of a student’s beliefs about 

their abilities or the likely outcome of engaging in an activity (Eccles & Wigfield, 

2002; Wigfield & Eccles, 2000), which can impact a person’s desire to play a game 

(Koster, 2013).  The discussion of each design principle in this section uses the 

language of expectancy-value theory to consider what implications can be drawn 

from game design literature for enhancing the subjective gameplay-value of a 

mathematics learning game.   

 

Variety Principle: A mathematics learning game should 
provide many opportunities for its players to learn through 
engagement with important mathematical ideas that 
contribute to the attainment of the intended learning 
outcomes.   

 

A game should continue to offer its players opportunities to learn new things 

(Koster, 2013), and should avoid stagnation, which occurs when nothing new seems 

to happen for too long (Fullerton, 2008).  At first glance, this might seem to suggest 

that a designer should include as many mathematical tasks as possible within a 

single game.  However, simply giving a player many of the same tasks may lead to 

overlearning, which is an excessive amount of repetition that does not provide more 

learning gains (Rohrer & Taylor, 2006).  While the inclusion of many types of 
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mathematics tasks might provide a player with many opportunities to learn, if too 

many of those tasks do not contribute to the attainment of the intended learning 

outcomes, then a player might make better use of their time by engaging in other 

learning strategies.   Variety is more than numerosity.  A mathematics learning game 

requires a balance in its variety of tasks (quantity, type, and sequencing) in a way 

that facilitates the attainment of the intended learning outcomes.  Some possible 

ways to provide meaningful variety are discussed below.   

 

Incorporating a collection of mathematics tasks that could be related to each 

other within the context of the game, but that would not seem obviously related to 

students, could potentially delay the impression of repetitive tasks.  It might only 

cause a delay because a player who begins to see the relationship between the tasks 

will begin to see them as repetitive.  However, the observation of those relationships 

between tasks might be a desirable learning outcome.  One such example could be a 

tabletop math learning game that includes mathematical tasks involving multiple 

representations (e.g., situational, symbolic, or visual), which might be particularly 

attractive in that it is also aligned with the “Representations” process standard 

recommended by the National Council of Teachers of Mathematics (NCTM, 2000). 

 

Fullerton (2008) argues that the right balance of surprise and anticipation 

will make a game more enjoyable.  Chance events can be used to increase the 

perceived variety in a tabletop math learning game by introducing elements of 
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surprise.  Random events can be triggered by player actions and interactions, or by 

the game world itself.  For example, if a game requires players to take turns using 

game pieces to co-construct the graph of a function, then one player’s decision can 

create new opportunities and challenges for another player through the 

randomness of that decision.  If the game board contains locations that trigger 

random events when occupied, the game world would be creating new 

opportunities and challenges for the player(s).  Many of these random events should 

have an impact on the use of mathematical knowledge or the engagement with 

mathematical ideas.  For example, an event could change (or give) a mathematical 

constraint that a player must interpret and apply appropriately to carry out their 

intended actions.  If such an event favors a player, it could relax a constraint or give 

them an additional reward if they successfully perform the embedded mathematics 

task.   

 

Variety can enhance subjective gameplay-value through providing more 

challenges (attainment value), piquing curiosity through novelty (intrinsic value), or 

providing meaningful learning opportunities that contribute to the achievement of 

the learning outcomes (utility value).  By enhancing the subjective gameplay-value 

of an educational mathematics game, this kind of meaningful variety supports 

productive disciplinary engagement by giving learners increased agency over 

whether and to what degree they will engage with the game as a learning activity.     
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The Virtuous Cycle Principle: A mathematics learning game 
should give a player meaningful control to make 
consequential choices that brings their creativity to bear.   

 

Success should yield more (or different kinds of) meaningful control.  Games 

should give players control, choices, and opportunities for creativity (Adams, 2010; 

Caillois, 1961; Fullerton, 2008; Koster, 2013; Salen & Zimmerman, 2004).  While 

some authors have drawn distinctions between these three notions (e.g., Fullerton, 

2008; Salen & Zimmerman, 2004), there seems to be an underlying interdependency 

between the three concepts.  Control without choice or creativity would be 

manifested in a game like slot machines, which may not be desirable as a learning 

activity (except, perhaps, if the learning activity involves probability).  Choice 

without control seems to be nonsensical, if not impossible, and choice without 

creativity can become tedious (Fullerton, 2008).  Lastly, creativity without control 

or choice is simply imagination.   

 

Players are motivated by meaningful control (Garris, Ahlers, & Driskell, 

2002) and want agency (Fullerton, 2008; Ke et al., 2016).  Enabling players to use 

their creativity to solve problems can make a game “fun” (Squire, 2011) and offering 

multiple ways to achieve success engenders creative thinking (Fullerton, 2008).  A 

game should give its players meaningful control which leads to consequential 

choices which allow players to bring their creativity to bear.  After a player makes 

their choice and takes an action, the player should again have some meaningful 

influence.     



53 

 

 

 

The virtuous cycle can help a learner feel more competent because it rewards 

them with continued agency and empowerment in performing mathematics tasks.  If 

the learner perceives some agency in their problem solving within the game, then 

that could mean they perceive those (and possibly similar) mathematical tasks as 

being attainable by them.  The virtuous cycle empowers a learner by giving them 

agency and authority and can improve their expectancy beliefs.  

 

Flow Principle: A mathematics learning game should 
immerse each player in a flow experience that sustains the 
player’s engagement in game-based mathematical activities 
throughout the duration of the game.     

 

The psychological experience of flow is a subjective state which occurs when 

an individual is so thoroughly focused or immersed in an activity that their sense of 

time and space becomes distorted, the activity is perceived as being inherently 

rewarding, and the individual perceives a sense of agency in that they become 

confident that they can handle whatever challenges may arise in the activity 

(Csikszentmihalyi, 1991; Nakamura, & Csikszentmihalyi, 2009).  Quoting from 

Nakamura and Csikszentmihalyi (2009), the necessary conditions for a flow 

experience are:  

• perceived challenges, or opportunities for action, that stretch but do 

not overmatch existing skills; 

• clear proximal goals and immediate feedback about the progress 

being made.  (p. 195) 
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Keller and Landhäußer (2012) argue that the conditions believed to be necessary 

for a flow experience can be reduced to the first condition (i.e., the perceived 

challenges match the perceived skills).  This reduction is helpful for designers 

because it narrows the focus to perceived difficulty in the game.  In a mathematics 

learning game, a player could perceive difficulty in the mathematics or in the game 

(e.g., the mechanics or rules).  The remainder of the discussion establishes the need 

for a math learning game to position itself to enable flow, followed by offering some 

ways that designers can understand player feedback that might suggest “the game is 

too difficult.”   

 

Van Eck (2006) argues that “good games promote flow” (p. 11), and Garris et 

al. (2002) say “the concept of flow provides one perspective on the feelings of 

enjoyment and engagement that can be experienced” (p. 452) by players.  In 

addition to contributing to “enjoyment,” a flow experience in a learning game can 

facilitate learning as well.  For example, Hamari et al. (2016) found a positive 

association between “conditions for flow (i.e., challenge and skill)” (p. 176) and 

learning, and Plass et al. (2015) argue that in-game flow experiences are a form of 

“optimal engagement, that is, engagement optimized to facilitate learning” (p. 262).  

Ke et al. (2016) says that a learning game can cause a player to be “so engaged and 

absorbed in the problem-solving activity that he/she loses the sense of effort and 

repetition, and gains powerful satisfaction from solving the game challenge” (p. 

1183).   
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  Describing how to induce flow in the context of gameplay, Garris et al. 

(2002) say that “flow derives from activities that are optimally challenging” (p. 452), 

and Ravyse et al. (2017) state, “challenge should constantly be on the fringes of 

player ability” (p. 51).  Ravyse et al. later add,   

as gameplay progresses, player abilities go up and that challenges should 
always be on the edge of player ability. This suggests that game tasks should 
become gradually more difficult in order for a player’s cycle of mastery to be 
continuously challenged. (p. 53)   
 

It follows, from these descriptions, that designing a math learning game to induce 

flow is not perfectly attainable due to the dependence on individual player 

perspectives.  Instead, a mathematics learning game should position itself to enable 

flow, attempting to satisfy the necessary condition.  It can be useful to consider ways 

of understanding in-game experiences of difficulty.     

 

As many of the descriptions point out, the game’s challenges need to be 

aligned with learner-player skill.  If the game is too easy, then they will become 

bored, and if the game is too hard, then they will become anxious (Fullerton, 2008; 

Koster, 2013; Salen & Zimmerman, 2004).  Some ways of doing this in a multiplayer 

tabletop math learning game might be providing different rule sets for variations of 

the game, including game mechanics that make the game harder as the game 

progresses, or including game mechanics and constraints that both depend on and 

inform player interactions with each other and with the game.  While Scrabble® is 

not a math learning game, it exemplifies the last two examples.  The game becomes 
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more challenging as the game progresses because resources deplete (tiles are 

played) and space availability diminishes (board space fills), and both of those 

aspects depend on and inform player interactions with the game.   

 

One aspect of perceived in-game difficulty is cognitive load.  Cognitive load 

theory assumes that working memory can only process a few pieces of current 

information (Muller, 2008; Pollock, Chandler, & Sweller, 2002).  Cognitive overload 

occurs when the cognitive demand exceeds cognitive capacity of one’s working 

memory (Mayer & Moreno, 2003).  There are three types of cognitive load: intrinsic, 

germane, and extraneous (Leppink, Paas, Van der Vleuten, Van Gog, & Van 

Merriënboer, 2013; Zhang, Ayres, & Chan, 2011).  Intrinsic cognitive load is the 

cognitive demand inherent to a learning task.  In a mathematics learning game, 

intrinsic cognitive load would be the difficulty of the mathematics tasks with which 

a player engages.  Germane cognitive load is the cognitive demand associated with 

organizing information and relationships between concepts.  In a mathematics 

learning game, germane cognitive load would relate to the player’s mental 

organization of mathematical objects, their properties, and the relational 

connections among them.  Extraneous cognitive load is the cognitive demand that is 

not necessary to learn a topic.  A mathematics learning game will have a certain 

amount of extraneous cognitive load that is unavoidable (e.g., the non-mathematical 

aspects of the pretended reality and its governing rules), and there is some evidence 

to suggest that extraneous cognitive load can be tolerated in a learning game (Zhang 
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et al., 2011).  However, due to limited cognitive resources, germane cognitive load is 

generally viewed positively and extraneous cognitive load negatively (Leppink et al., 

2013).   

 

Designers should minimize the extraneous cognitive load that would cause 

the player to perceive the game itself as too difficult.  Examples of extraneous 

cognitive load that could interrupt the flow experience might include playing cards 

with font that is too small to read or an ordering of gameplay that seems chaotic or 

frantic.  Designers should also be mindful of the intrinsic cognitive load of the 

mathematics tasks embedded within the game.  If those mathematics tasks are too 

challenging, then designers should attempt to mix in easier tasks or break the 

challenging tasks into smaller constituent tasks that do not make the game “too 

easy” or violate the variety principle.  Teachers should be aware of the germane and 

intrinsic cognitive loads at the level of each individual student (see the timing 

principle for implementation of multiplayer tabletop mathematics learning games). 

 

Multiplayer games run the risk of one player dominating the other players in 

a way that makes the other players feel that achieving success is impossible.  Koster 

(2013) refers to this as the mastery problem, and he says that it “must be dealt with” 

(p. 124).  A perception that success is impossible can degrade a student’s ability 

beliefs and outcome expectancy (Wigfield & Eccles, 2000), making it less likely that 
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the student will want to engage in the gameplay.  These lowered expectancies could 

be related to the embedded mathematics content.   

 

Some game design authors approach one potential underlying cause of the 

mastery problem through an engineering lens (e.g., Fullerton, 2008; Salen & 

Zimmerman, 2004).  Fullerton (2008) describes a reinforcing mechanism as 

something that causes instability in a game by amplifying the effects of player 

choices and actions.  A reinforcing mechanism often favors a successful player and 

compounds the effects of their successes early in the game to rapidly create 

insurmountable challenges for their opponent later in the game (Salen & 

Zimmerman, 2004).  Fullerton describes a balancing mechanism as something that 

brings about stability or equilibrium in a game by damping the effects of player 

choices and actions.  A balancing mechanism often temporarily favors an 

unsuccessful player by making it more difficult for the more successful player to win 

near the end of the game (Salen & Zimmerman, 2004).  A designer of a multiplayer 

tabletop math learning game should avoid game structures that could widen the 

goal attainment gap between a successful player and an unsuccessful player in the 

early part of the game, making it impossible for the unsuccessful player to close that 

gap in the later part of the game.      

 

Stress caused by the game or player interactions could interrupt a flow 

experience and cause a player to want to stop playing.  On the other hand, tension 
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could be beneficial in a game, if that tension does not lead to stress.  Definitions of 

tension include “inner striving, unrest, or imbalance” and “a state of latent hostility 

or opposition” (Merriam-Webster Dictionary online).  Both kinds of tension can 

arise in a game (Salen & Zimmerman, 2004).  Generally, tension is a desirable 

component of most forms of play (Huizinga, 1950), and Caillois (1961) argues that 

play originates with tension related to uncertainty.  Salen and Zimmerman (2004) 

argue that games are “artificial conflict” (p. 80), even when a game is single-player 

or cooperative.  Games produce tension because the player aims to overcome a 

challenge while it is uncertain that they will succeed (Adams, 2010).  Players enter 

the pretended reality voluntarily (Huizinga, 1950; McGonigal, 2011) and as a result 

of the absurd means by which challenges manifest (Salen & Zimmerman, 2004).   

 

In regard to tension in a game, Suits (2014) points out that outside the 

pretended reality, the goals of most games would easily be achieved by means not 

present in the game.  Suits uses the example of transporting a small ball into a hole 

hundreds of yards away.  This task is quite easy if one carries the ball and places it in 

the hole.  However, golfers are more than happy to attempt this feat with a couple of 

sticks, only allowing themselves to strike the ball with those sticks.  Golf is an 

extreme example to make the point that games incorporate “unnecessary” stressors.  

Suits (2014) continues,  

In anything but a game the gratuitous introduction of 
unnecessary obstacles to the achievement of an end is regarded 
as a decidedly irrational thing to do, whereas in a game it 
appears to be an absolutely essential thing to do. (p. 41)   
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Put another way, people often play games with a goal of engaging with mildly tense 

challenges in order to overcome the otherwise unnecessary obstacles (McGonigal, 

2011). 

   

Game features and elements that are associated with inner striving, (mild) 

unrest, and (mild) imbalance can be called, positive tension.  For example, the 

tension that may arise as a result of nearness to goal completion or anticipating 

achievement is expected to increase motivation to play due to an association with 

mastery and inner striving (Chou, 2015).  Game features and elements that are 

associated with stress or a latent state of hostility can be called, negative tension.   

For example, the tension that may arise out of loss avoidance or a fear of failure is 

expected to decrease motivation to play due to an association with anxiety (Chou, 

2015).  Chou (2015) characterizes this dichotomy with the notions of “white hat” 

and “black hat,” which correspond to the present uses of positive and negative, 

respectively.  Chou argues that neither is inherently “good” or “bad” in a game.  He 

argues that a small amount of loss avoidance or fear of failure can be a good thing, if 

it does not cause one of the two extremes: quitting or addiction.   

 

Making the distinction between positive tension and negative tension can be 

useful for designers during playtesting.  If players report that certain game features 

are causing loss avoidance, fear of failure, or other feelings associated with stress, 
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then the subsequent design choices can be framed around balancing or replacing the 

negative tension with positive tension, rather than simply eliminating the tension.   

 

Understanding individual gameplay experiences are important for designers 

to consider in the design of a mathematics learning game that aims to adhere to the 

flow principle.  Playtesting will be a key part of designers coming to that 

understanding for any game (Fullerton, 2008).  The discussion above can be useful 

for framing the feedback that playtesters provide designers.  If players for whom the 

game is designed commonly express a perception that the game is too difficult, 

designers can begin to investigate the degree to which a high cognitive load (and 

what kind), a reinforcing mechanism, or too much negative tension might be related 

to the perceived difficulty.  If the game is perceived as being too easy by students, 

then designers of mathematics learning games can use the above discussion to 

explore ways of making the game more challenging.     

 

Designing a math learning game to adhere to the flow principle is likely to 

have a positive impact on a learner’s expectancies (ability belief and expectation for 

outcomes) because the game is more likely to maintain a balance between the 

challenges and their skill level.  In addition, a mathematics learning game that 

induces a flow experience can support productive disciplinary engagement through 

an immersive experience that causes a learner to want to play the game, giving them 

a sense of agency over how they reach the learning outcomes.   
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Implementation principles 

 
The implementation principles presented in this section are intended to 

assist teachers in effectively using multiplayer tabletop mathematics learning games 

as learning activities in the classroom setting to create opportunities for, and 

support of, productive disciplinary engagement in mathematics as described by 

Engle and Conant (2002).   

 

In addition to their design principles, Dick and Burrill (2016) offer 

implementation principles for teachers to make the best use of dynamic interactive 

mathematics technologies in the classroom, while engaging students in sense-

making, reflection, and inquiry.  Each of their implementation principles are 

applicable to educational mathematics games and strongly influenced the 

formulation of the tabletop game implementation principles discussed here.  The 

five implementation principles proposed by Dick and Burrill (2016) are:  

1. Mathematical Content Principle: The activity should have 

mathematical content that aligns with the curricular goals. 

2. Curricular Timing Principle: The activity should come at an 

appropriate time in the curricular sequence and when students are 

developmentally ready. 

3. Questioning Principle: The environment should allow for 

mathematical inquiry and questions that challenge a student’s 

mathematical thinking. 

4. Reflection Principle: The activity should foster a student’s 

mathematical sense-making and reasoning. 
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5. Mathematical Practice Principle: The activity should engage 

students in mathematical practices. 

 

 

Table 3 lists the five implementation principles for multiplayer tabletop 

mathematics learning games. 

Table 3: The implementation principles for multiplayer tabletop mathematics learning 
games. 

Timing Principle Teachers should use a math learning game at a time 
appropriate to student development and curricular 
goals. 

Planning Principle Teachers should plan the implementation of a math 
learning game in terms of what the learners will 
need in order to successfully play the game and 
attain the learning outcomes. 

Briefing Principle Teachers should prepare students for a math 
learning game by establishing behavioral norms and 
explaining the game and its relevance. 

Managing Gameplay Principle Teachers should monitor a math learning game 
activity and its player interactions.  The teacher 
should clarify rules and assist with adjudication as 
needed and facilitate the mathematical discourse 
when asked for help.   

Debrief Principle The teacher should follow a math learning game 
activity with a moderated debriefing session to help 
students make connections between the game and 
the learning outcomes.   

 

 

The first three implementation principles all describe what preparation a 

teacher should make in advance of a game being deployed as an activity in the 

classroom.  The fourth principle provides guidance on what should be done during 

gameplay, and the fifth principle addresses teacher-led discussion after the 

mathematics learning game activity.   
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Timing the use of a mathematics learning game 

Timing Principle: Teachers should use a math learning game 
at a time appropriate to student development and 
curricular goals.   

 

The National Council of Teachers of Mathematics (NCTM) recommends tasks 

that promote mathematical reasoning and problem solving (NCTM, 2014), and a 

game that does not serve important curricular goals could be a waste of valuable 

class time.  In addition, the mathematics tasks in a learning game should build on a 

student’s prior knowledge (Stein & Smith, 1998) and should engage students in 

productive struggle (NCTM, 2014).  A mathematics learning game with content that 

is too advanced for a student could lead to lower ability beliefs, frustration, or both.  

If a game involves mathematics tasks that are more complex than “remembering” in 

Bloom’s revised taxonomy (Krathwohl, 2002), then it is best if implementation 

occurs near the time students learn those topics (Bright, Harvey, & Wheeler, 1985).  

In terms of productive disciplinary engagement, timing the use of mathematics 

learning game to match a student’s readiness helps to enable the student to be an 

author of their knowledge.  

 

Planning for the use of a mathematics learning game 

Planning Principle: Teachers should plan the 
implementation of a math learning game in terms of what 
the learners will need in order to successfully play the game 
and attain the learning outcomes.   
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With an eye toward managing gameplay and the debrief session following 

gameplay, a teacher should fully understand the game, be fully aware of the 

mathematical ideas that are embedded within the game, and be cognizant of the 

mathematical practices that are enabled through the game.  It is best if a teacher 

plays the game as part of their planning, following the advice of Stein et al. (2008) 

when they say, 

Anticipation requires that teachers, at a minimum, actually do the 
mathematical tasks that they are planning to ask their students to do. 
However, rather than finding a single strategy to solve a problem, 
teachers need to devise and work through as many different solution 
strategies as they can. Moreover, if they put themselves in the position 
of their students while doing the task, they can anticipate some of the 
strategies that students with different degrees of mathematical 
sophistication are likely to produce and consider ways that students 
might misinterpret problems or get confused along the way. (p. 323) 
 

 

Playing the game can also help a teacher identify the kinds of resources 

students may need during the gameplay.  For example, if students have not seen the 

mathematical language or notation in the game, a short reference sheet that is 

simple and easy to understand could facilitate gameplay.  Such a reference sheet 

could help keep a student “in the game” by providing them with necessary tools to 

complete the in-game mathematics tasks, rather than having to repeatedly stop play 

to ask the teacher for “translations” or to locate the relevant material in a book 

(which itself could be a laborious process external to the gameplay).  Teachers 

should be careful not to include resources that effectively negates the learning by 
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providing students with “the answers.”  Rather, the resources should engage 

students in mathematical sense making and reasoning.   

 

Preparing students for a mathematics learning game 

Briefing Principle: Teachers should prepare students for a 
math learning game by establishing behavioral norms and 
explaining the game and its relevance.   

 

The establishment of norms and standards of behavior before students begin 

to play the game can reduce the likelihood that students might use the game 

environment to insult, intimidate, or bully their peers.  Such negative behavior could 

arise due to an intense interest in “winning the game” or otherwise showing 

superiority.   

 

A walkthrough of the rules and how to play a mathematics learning game can 

reduce the impact of the extraneous cognitive load introduced by the game, 

especially if the game is complex or the mathematics is new to the students.  Some 

students could benefit further from a practice round of play to avoid feelings of 

being overwhelmed by the game in addition to the mathematics.  The walkthrough 

and practice round could serve as a form of scaffolding in the (game) activity, 

consistent with advice from Stein and Smith (1998).   

 

Teachers should make students aware of the mathematical relevance of the 

game, and prime students for mathematical connections to be made.  This can serve 
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to focus the students’ learning through the establishment of mathematics goals and 

learning outcomes (NCTM, 2014).  If the game uses mathematical language or 

notation that is unfamiliar to the students, the teacher should inform the students, 

and the teacher should explain or point out any in-game references and resources to 

help the students effectively “translate” the unfamiliar terms and symbols.   

 

If briefing students on the game and its relevance requires a lot of time, 

teachers could break up the briefing or the gameplay to occur across multiple 

sessions in order to allow ample time for students to become fully engaged with the 

game and its embedded mathematics.  This is consistent with advice from Stein and 

Smith (1998) that advocates for providing students with enough time to explore 

mathematical tasks or ideas that have a high level of cognitive demand.   

 

Monitoring and managing the game activity 

Managing Gameplay Principle: Teachers should monitor a 
math learning game activity and its player interactions.  The 
teacher should clarify rules and assist with adjudication as 
needed and facilitate the mathematical discourse when 
asked for help.   

 

Actively monitoring the game activity by circulating around the room serves 

two purposes.  One purpose is to help a teacher “identify the mathematical learning 

potential of particular strategies or representations used by the students” (Stein, 

Engle, Smith, & Hughes, 2008, p. 326), that could be leveraged during the debrief 

session following the game activity.  The other purpose of monitoring gameplay is to 
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manage and respond to player interactions.  Monitoring can help a teacher identify, 

and then respond to, any instance of students not following the established 

behavioral norms, not engaging in the intended mathematics learning activity, 

needing assistance with understanding rules, or getting lost or “stuck” in the game.    

 

If students ask for assistance, teachers should help in a way that facilitates 

meaningful mathematical discourse among the students playing the game (NCTM, 

2014).  There may be times that students become “stuck” trying to perform the 

embedded mathematics tasks, or get confused by the relationships between 

performing the embedded mathematics tasks and the rules of the game.  In such 

instances, teachers can point out something that a student said that could be useful, 

remind the players of the relevant in-game resource(s) that could be useful, indicate 

the presence of an achievable goal or implementable strategy, or indicate the 

achievable goal or implementable strategy.  However, teachers should be wary of 

interrupting any productive disciplinary engagement with mathematical ideas that 

might occur during gameplay.  Interruptions could stop the game flow (see flow 

principle above) and should only be done as a last resort to keep students from 

going too far afield of the intended learning outcomes or from repeated errors in 

adjudication.   

 

In monitoring gameplay, teachers may find that students have been matched 

up in gameplay groups in unproductive ways.  For example, a game group could be 
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socializing, but not collaborating on the gameplay or its relevant mathematics.  A 

game group could also have widely varying skill levels amongst its players that 

disrupt the game flow, whether that variation in skill occurs relative to the game 

task performance or the mathematics task performance.  Less skilled 

players/students could begin to feel overmatched by skilled players/students, 

which could negatively impact their ability beliefs.  Skilled players/students could 

disengage or feel “bored” while they wait for less skilled players/students to 

increase in skill, which could potentially lead to disruptive behavior.  If a game 

group formation gives rise to these kinds of mismatches between players, then the 

teacher should consider modifying the game groups to make the game activity more 

productive and engaging for all the students.   

 

Teacher-led discussion following gameplay 

Debrief Principle: The teacher should follow a math learning 
game activity with a moderated debriefing session to help 
students make connections between the game and the 
learning outcomes.   

 

Teachers should leverage the game activity to ask good questions that lead to 

meaningful insights (as in Dick & Burrill, 2016; NCTM, 2014).  Teachers should also 

help students make connections between the gameplay and the mathematics 

learning outcomes (as in NCTM, 2014; Stein & Smith, 1998).  Student contributions 

to the debrief discussion could be in the form of describing gameplay moments or 

strategies that reveal, to their classmates, insights into the mathematical ideas at 
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play.  For some mathematics learning games, steering the debrief discussion toward 

“best-play strategies” could be revelatory in terms of mathematics sense making and 

reasoning.  Students’ ideas could be selected, sequenced, and then connected to each 

other, the game, and the relevant mathematics concepts (as in Stein et al., 2008).   

 

Discussion 

 

Multiplayer tabletop mathematics learning games afford unique challenges 

and opportunities to productively engage students in mathematics as a discipline.  

Such games give rise to player-player and player-teacher interactions that can help 

students make deep connections while engaging in meaningful mathematics 

discourse and mathematical sense making and reasoning.  This paper proposes a set 

of design principles that are intended to support productive disciplinary 

engagement (Engle & Conant, 2002) in mathematics, while helping developers to 

craft mathematics learning games which students perceive as having gameplay-

value.  At the same time, teachers play an important role in using a game activity to 

support productive disciplinary engagement in mathematics, and a set of 

implementation principles is provided in order to help teachers realize the potential 

of a game-based learning activity.  These two sets of principles are positioned for 

future game-based learning research into questions of designing for learning 

outcomes (Gaydos, 2015; Ke et al., 2016) and implementation in the classroom 

(Gaydos 2015; Van Eck, 2006; Westera, 2015). 
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An educational mathematics game could be evaluated on two dimensions: 1) 

its subjective gameplay-value, and 2) its impact on learning.  Expectancy-value 

theory helps to frame subjective gameplay-value in a way that can inform design.  

Playtesting can potentially reveal game features and elements that enhance (or 

reduce) gameplay-value.  Designers can use the language of expectancy-value theory 

to determine if changes in game-play value are related to changes in ability beliefs, 

attainment value, intrinsic value, or utility value.  Those findings could, in turn, be 

weighed against the game’s potential for supporting productive disciplinary 

engagement in order to make design choices for subsequent versions of the game 

that “balance the learning with the fun.”  A direction for future research might be to 

investigate how a multiplayer tabletop mathematics learning game could be 

designed in accordance with the proposed design principles, then cycle through 

playtests and design modifications while attending to subjective gameplay-value 

and opportunities for productive disciplinary engagement, to see how (or even, if) a 

“balance” can be struck.   

 

Assessment of a mathematics learning game for its impact on learning should 

include productive disciplinary engagement.  Engle and Conant (2002) offer some 

evidentiary indicators of productive disciplinary engagement that could be 

leveraged in the assessment of a multiplayer tabletop mathematics learning game’s 

implementation (e.g., students/players making coordinated contributions toward 
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the achievement of game and mathematics goals).  A direction for future research 

could be to use the two sets of principles to design and implement a multiplayer 

tabletop mathematics learning game and assess whether and to what degree 

students might productively engage with mathematical ideas during gameplay.   
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CHAPTER 3: MATHEMATICS LEARNING GAME DEVELOPMENT AS DESIGN 
EXPERIMENT: THE CASE OF THE FUNCTION REPRESENTATIONS CARD GAME 

CURVES AHEAD! 

 

Introduction 

  

 A mathematics learning game is a game that is designed to help students 

attain specified learning outcomes.  Such games may be attractive to mathematics 

teachers who hope to increase “engagement” or make the classroom environment 

more “fun.”  Some argue that learning games must balance the desired learning 

outcomes with “fun,” in order to avoid both a failure to help students achieve 

learning outcomes and student perceptions that the game is simply a repackaging of 

schoolwork (e.g., Garris, Ahlers, & Driskell, 2002; Habgood & Ainsworth, 2011; 

Nicholson, 2011; Van Eck, 2006; Weitze, 2014).  To stress their view that achieving 

this balance is nontrivial, Garris et al. (2002) say,  

the instructional games that we wish to design are not merely 
games in which learning is a by-product of play but games that 
are devoted to learning.  The challenge is to adapt game features 
for instructional purposes… that sustains self-directed interest, 
without squeezing out what is enjoyable about games in the first 
place. If we succeed, we will be able to develop games that 
instruct and instruction that engages the student.  If we fail, we 
end up with games that are dull and instructional programs that 
do not teach.  (p. 459) 
 

 

 The use of games in the classroom to help students attain learning outcomes 

is known as game-based learning.  Most of the recent research appears to be in the 
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area of digital game-based learning (Ke, 2011), which is the use of a computer, 

console, or mobile game as a learning activity.  In addition, digital learning games 

seem to be primarily played by an individual student (Harteveld & Bekebrede, 

2011).  In his influential book, What Video Games Have to Teach Us About Learning 

and Literacy, James Paul Gee describes 36 learning principles that are embodied by 

video games (Gee, 2003).  Applying Gee’s insights and then extending them into the 

area of mathematics education, Devlin (2011) argues that digital games can be an 

ideal learning environment for mathematics.   

 

While there have been some efforts in designing multiplayer digital learning 

games (Ke, 2011), efforts to leverage player-to-player interactions have often come 

up short of expectations (Westera, 2015).  In most instances, it seems that “open 

conversations are likely to be absent and that information is kept secret rather than 

being shared and discussed” (Wester, 2015, p. 10).  On the other hand, multiplayer 

tabletop mathematics learning games, which include board games, card games, and 

other kinds of games that are generally played on a flat surface, afford unique 

opportunities in player-to-player (and player-to-teacher) interactions that can be 

leveraged into engagement with important mathematics ideas.  Multiplayer tabletop 

games can require that players adopt and enforce a set of rules while they play, 

which can then be leveraged to engage players in the exchange of mathematical 

ideas through crafting and critiquing mathematical reasoning and arguments 

(Renne, 2019, Chapter 2), a recommended standard for mathematical practice (The 
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Common Core State Standards for Mathematics, by National Governors Association 

Center for Best Practices, 2010).   

 

 Renne (2019, Chapter 2) proposes a set of design principles and design 

considerations to guide the development of multiplayer tabletop mathematics 

learning games.  The design principles and design considerations are framed by the 

construct of productive disciplinary engagement (Engle & Conant, 2002), which 

provides a useful language for describing student engagement with mathematical 

ideas.  Slightly extending Engle and Conant’s (2002) construct, while remaining 

consistent with its original use and intent, Renne (2019, Chapter 2) defines 

disciplinary engagement in mathematics as the focused and active participation in 

an activity that engages students in the issues, practices, or discourse of 

mathematics.  Engle and Conant (2002) say that disciplinary engagement is 

productive to the extent that students are making intellectual progress during that 

engagement.   

 

An educational mathematics game can be evaluated on two dimensions: 1) 

its impact on student learning, and 2) its subjective gameplay-value.  Productive 

disciplinary engagement in mathematics is one way to frame potential impacts on 

student learning, and expectancy-value theory of achievement motivation described 

by Wigfield and Eccles (2000) provides a useful language to understand student 

willingness and motivation to play a mathematics learning game.  Expectancy-value 
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theory of achievement motivation focuses on a student’s perceptions of their 

likelihood for success (expectancies) in an activity, and whether a student wants to 

engage in an activity (task-value).  Through this lens, subjective gameplay-value can 

depend on a student’s expectancies for success as it relates to the gameplay and the 

embedded mathematics tasks, as well as a student’s subjective value of the 

gameplay as a task in and of itself (though it might constitute many mathematics 

tasks).   

 

This paper presents a detailed account of the development of the function 

representations card game Curves Ahead!, using Renne’s design guidelines and this 

view of subjective gameplay-value to steer an iterative design process.  The iterative 

refinement and subsequent testing of the game are treated as a design experiment.   

 

The function representations card game Curves Ahead! 

 

The card game Curves Ahead! is designed for precalculus and calculus 

students.  The game requires players to match a given graphical representation of a 

mathematical model to one or more cards that describe a representation that is 

tabular, symbolic, verbal, or physical.  Engagement with multiple representations is a 

process standard recommended for K-12 mathematics by the National Council of 

Teachers of Mathematics (NCTM, 2000), multiple representations of functions is a 

centrally important topic in calculus (Dick & Edwards, 2008), and translations 
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between function representations is an important ability in mathematics learning 

(Gagatsis & Shiakalli, 2004; Janvier, 1987).   

 

The mathematical content that is targeted by Curves Ahead! focuses on the 

signs of the first and second derivative of a function.  The intended learning 

outcomes include fluency and automaticity in the identification of whether a 

function is increasing or decreasing and whether its graph is concave up or concave 

down, given descriptions of the function across several different representations.  

The motivation behind choosing this content is the repeated finding that students 

struggle to conceive the relationships represented by a function, especially across 

intervals.   

 

For example, calculus students have misconceptions in relating the graph of a 

function with its analytic properties, with common struggles in coordinating the 

signs of the first and second derivative across intervals (Baker, Cooley, & Trigueros, 

2000).  Students are slow to develop the understanding that functions relate two 

variables that change together, or covary (Carlson, Jacobs, Coe, Larsen, & Hsu, 

2002), and students struggle to interpret graphical representations of rate of change 

(Monk, 1992; Monk & Nemirovsky, 1994). 

 

The design challenge for Curves Ahead! was to  

1. embed (or situate) the selected mathematics content within the game,  

2. through tasks that required matching,  
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3. in order to engage students in the process of translating function 

representations, and 

4. in a way that would engender student perceptions of gameplay-value 

5. while maintaining opportunities for productive disciplinary 

engagement in mathematics. 

 

 

Terminology related to games 

 

Definitions of key terms are presented here for the purpose of the discussion 

of game design. 

 

Renne (2019, Chapter 2) provides the following definition of game:   

A game is a voluntary play activity in a pretended reality 
governed by rules, wherein the participant(s) try to achieve 
one or more goals, and where degrees of success in the 
attainment of goals are conveyed by a feedback system. 
 

The four aspects of a game in this definition are voluntary participation, pretended 

reality governed by rules, adoption of goals, and progress conveyed by a feedback 

system.  A pretended reality is a game’s setting, where “the players assign artificial 

significance to the situations and events in the game” (Adams, 2010, p. 5).  Player 

goals can be internal to the game (e.g., successful completion of all challenges) and 

external to the game (e.g., playing with a friend).  A learning outcome can be a goal 

that is adopted by the player, teacher, and designer of the game.  A feedback system 

can convey actual or potential progress to a player (Renne, 2019, Chapter 2).  

Feedback of actual progress is information that conveys to a player “how far they 
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have come” in relation to a game goal (i.e., proximity to a goal), while feedback of 

potential progress is information that conveys to a player “how far they can go” in 

relation to a game goal (i.e., potential for achievement).   

 

An educational game is a game that is designed to assist a student in the 

attainment of specified learning outcomes, and an educational mathematics game is 

an educational game with mathematics learning outcomes.  The terms, educational 

math game, math game, mathematics game, mathematics learning game, and math 

learning game are all taken to be synonymous with educational mathematics game. 

 

Renne (2019, Chapter 2) defines a game mechanic to be:  

A structured action within the pretended reality of a game 
that can occur between players, between the player(s) and 
the game, or internally to the game.   
 

Renne provides the examples of resource exchange as an example of a player-to-

player mechanic, resource placement as an example of a player-to-game mechanic, 

resource allocation as an example of a game-to-player mechanic, and resource 

generation as an example of a mechanic internal to a game.   

 

A playtest occurs when a version of a game is played by a representative 

sample of likely players in order to test the degree to which it adheres to design 

guidelines or attains design goals.   
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Iterative refinements of a multiplayer tabletop mathematics learning game 

 

Game design relies on an iterative process (Adams, 2010; Fullerton, 2008; 

Salen & Zimmerman, 2004) that involves playtesting.  Due to some dependencies on 

player perceptions, playtests are necessary to thoroughly assess whether a 

multiplayer tabletop mathematics learning game conforms to Renne’s (2019, 

Chapter 2) design guidelines.  For example, player perceptions of difficulty, fairness, 

tension, and cognitive load are particularly important to consider, and evaluating 

the clarity and simplicity of the rules and adjudication process (checking for valid 

actions) also benefits from player input.  Feedback from players is necessary to 

understand how specific game features might positively or negatively impact a 

player’s perception of gameplay-value.  However, modifications made to a learning 

game to increase the subjective gameplay-value must be weighed against the impact 

those changes may have on opportunities for productive disciplinary engagement in 

mathematics.   

 

The development and refinement of the function representations card game 

Curves Ahead! included a method that utilized playtests to systematically obtain 

player feedback to aid in the design process. That method was employed to 

iteratively check for conformity to Renne’s (2019, Chapter 2) design guidelines and 

to participant perceptions of gameplay-value.  As such, the game design process for 
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Curves Ahead! appears to fit closely to the structure of design experiments, which 

are described in detail in the next section. 

 

Design experiments 

 

Iteration and refinement in design is necessary, “because designers never get 

the solution right the first time” (Rogers, Sharp, & Preece, 2011, p. 329).  Each cycle 

of an iterative design process yields more insights than the last, which helps to 

refine a design so that it converges to a desired state or solution (Norman, 2013; 

Rogers et al., 2011).  Each cycle informs the next through an examination of the 

proximity to the desired state.  Norman (2013) proposes that designers engage in all 

four of the following activities during each cycle of iteration.   

1. Observation: identify the design requirements, goals, and the target 

audience.   

2. Idea generation (ideation): propose mechanisms and solutions to 

achieve the design goals.   

3. Prototyping: convert ideas to informative, usable, or testable models. 

4. Testing: mimic authentic use of the prototype with small samples of 

the intended users as though it is the end product. 

 

 

Testing leads back into observation as the designers observe the degree to 

which “the new design meets the needs and abilities of those who will use it” 

(Norman, 2013, p. 229).  Norman (2013) adds that an iterative design process is 

nonlinear, and designers can (and sometimes should) go back and revisit past 

activities.  He situates iterations of the four activities within both phases of a two-
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phase model of design that begins with identifying the right problem and concludes 

with identifying the right solution.   

 

As in design science, use of design experiments in educational research 

strives to achieve usability of findings outside of the lab or research setting (Brown, 

1992).  To achieve this goal, teachers become part of the research team (Collins, 

1992; Gorard, Roberts, & Taylor, 2004), as do students (Brown, 1992).  Design 

experiments in educational settings involve the participation of researchers, 

teachers, and students alike.   

 

Design experiments are an iterative process that allow for alterations to both 

the underlying conjectures and the learning intervention during the experiment 

(Cobb, Confrey, DiSessa, Lehrer, & Schauble, 2003; Gorard et al., 2004; Middleton, 

Gorard, Taylor, & Bannan-Ritland, 2008).  The iterations allow for attention to why 

an intervention may not have the intended effects and how the intervention might 

be modified to get nearer to the intended effects (Brown, 1992).   

 

Design experiments might be useful for investigations in game-based 

learning and may provide a coherent research paradigm (Squire, 2003).  However, 

design experiments make multiple changes simultaneously among interwoven 

components of the environment that are difficult to isolate (Brown, 1992).  The 

sources of variation within a design experiment lead to questions about the 
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generalizability of findings for learning interventions (Desforges, 2000; Middleton et 

al., 2008; Shavelson, Phillips, Towne, & Feuer, 2003; Squire, 2003).   

 

In engineering, design studies iterate through successive refinements of a 

tool or product, aiming for a pragmatic solution to a given problem (Middleton et al., 

2008).  Successful design of a tool or product requires that the tool has utility (it 

solves the stated problem) and that people have buy-in (Norman, 2013).  Learning 

games can be viewed as tools5 that are designed to engage a learner (buy-in) while 

providing educational content (utility).  The most effective use of a design 

experiment in game-based learning research may be in the design process, so that a 

game under development is more likely to achieve its goals.   

 

Middleton et al. (2008) propose a research model for education and learning 

interventions that has seven phases: 

Phase 1. Grounded models:  Identify the research problem and grounded 

theoretical model. 

Phase 2. Development of artifact:  Propose an intervention based on the 

theory. 

Phase 3. Feasibility study:  Assess the theory and design, and estimate 

the effects. 

(if necessary, return to phase 1) 

Phase 4. Prototypes and trials:  Pilot one or more small-scale 

interventions. 

Phase 5. Field study:  Use the intervention in situ, modify as necessary, 

and document carefully. 

                                                           
5 Middleton et al. (2008) argue that learning interventions can be viewed as tools. 
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Phase 6. Definitive test:  Scale up to an experiment in the traditional 

sense. 

(if necessary, return to phase 4) 

Phase 7. Dissemination and impact:  Share the results with the field and 

practitioners. 

 

 

The first two phases and the last two phases form the classic research model, 

and the design experiment is the middle phases 3, 4, and 5 (Middleton et al., 2008).  

Like the model proposed by Norman (2013), this model encourages iteration to 

both properly articulate the problem, and to find a suitable solution.   

 

The few differences that exist between the models of Norman (2013) and 

Middleton et al. (2008) may be due to context.  Commercial product development 

can benefit from keeping the details of the process proprietary, sharing only the 

input (the crafting of the problem) and the output (the proposed solution).  

However, educational research has an added requirement of conveying a careful 

record of the experiment, its modifications, and other environmental conditions, to 

enable the research community to carefully examine the data from multiple 

perspectives (Cobb et al., 2003).   

 

Both kinds of iterative design processes outlined above necessitate an 

analysis of how well the proposed solution is performing given the problem in 

consideration.  The examination of progress in light of the goal informs the 

modifications for the next cycle and requires a clear way of making a judgement 
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(Cobb et al., 2003; Norman, 2013).  The intention behind the modifications is to 

make progress toward solving the problem.   

 

For the design of learning games, Vanden Abeele et al. (2011) recommend an 

iterative process that includes significant involvement from players and a broad 

range of specialists that can contribute to the game design.  They break the design 

process into three significant phases:  concept design, game design, and game 

development.  Most of the iterative process occurs during the last phase which 

includes the prototypes and playtesting, and each phase includes the participation 

of players and outside experts.   

 

In this paper, the developmental stages, phases, steps, and activities of the 

design experiment will be called design activities, and significant modifications or 

redesigns will be called design pivots.  Each stage of the design experiment has a 

different focus but follow a similar template to the one recommended by Vanden 

Abeele et al. (2011).  Table 4 provides an outline of the design activities that are 

present in each stage of the design experiment.   

 

The table is presented in an order that becomes less meaningful as the 

number of iterations increases.  This “ordering” was only loosely followed in the 

design experiment.  The indications of layering are included because game design 

involves an entanglement and interdependence between its features (Renne, 2019, 
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Chapter 2).  Importantly, each design activity may lead to a design pivot in any other 

design activity, but the bulk of design pivots occur as a result of playtesting.    

Table 4: Design activities for refining multiplayer tabletop mathematics learning 
games in a design experiment. 

Design Activity Description Layering of Activities 

Identify (or alter) 
possible learning goals 

Select educational content and tasks 
that support desired learning goals.  
Start broadly and then possibly narrow 
the selection during other design 
activities. 

Consider game mechanics that 
might match the educational 
content.  Some consideration of 
other features may be beneficial. 

Develop (or modify) a 
game concept 

Look to common game mechanics while 
adhering to the situated content 
principle for the design of math games. 

Some consideration of other 
features may be beneficial. 

Produce (or modify) a 
proto game6  

Create a playable mockup that exhibits 
the core mechanics with a handful of 
relevant and embedded educational 
tasks.  There is little need to attend to 
features that do not directly support the 
core mechanics.  

Consider game structure that will 
incentivize engagement with the 
core game mechanics. 

Playtest the proto game The designers test the fundamental 
game interactions. 

Be ready to make a design pivot in 
any design activity. 

Develop (or modify) a 
game prototype 

Create a version of the game for 
playtesting that adheres to some design 
principles.  The prototype should 
include most or all the features of the 
game that are believed to make the 
game a success. 

Consider possible play testers: the 
design team, outside experts, or 
the learners.   

Playtest Play testers play the game to estimate 
effectiveness of design (proximity to the 
design goals).  Achieve this through 
subjective experience surveys, 
interviews, or pre/post-tests, for 
example.   

 

 

Renne’s design principles for multiplayer tabletop mathematics learning 
games 

 
 

Renne (2019, Chapter 2) proposes 10 design principles in the creation of 

tabletop mathematics learning games.  Those will be reviewed briefly here.  

                                                           
6 Not to be confused with an unrelated game-development tool of the same name.   
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• Mathematical Fidelity Principle: The game should remain faithful to 

the mathematics, and be free of mathematical errors, ambiguities, and 

sloppiness.   

 

• Cognitive Fidelity Principle: The game should remain faithful to the 

mathematics as perceived by the player.  (For example, the 

mathematics presented in the context of the game could be correct 

but suggest to the player a conclusion that does not hold more 

generally.)   

 

• Embedding Principle: The game should embed the mathematical 

content so that the game elicits the formulation of the mathematical 

tasks and problem statements from the player through their 

gameplay.  The game should not directly or overtly pose mathematical 

tasks or problem statements to the players.   

 

• Rules Principle: The rules of the game should be simple to 

understand, clearly stated without ambiguity, consistent, and 

perceived by players as fair.  Adams (2010) argues that fairness is 

subjective to each player, but that it is extremely important that 

players generally judge a game to be fair. 

 

• Adjudication Principle: The game should adjudicate play fairly, 

correctly, and simply.  Ideally, a tabletop math learning game would 

provide a means for the players to adjudicate the gameplay 

themselves so that a teacher has more logistical flexibility (e.g., more 

time to facilitate meaningful mathematical discourse).   

 

Multiplayer tabletop mathematics learning games afford the 

opportunity to involve players in the adjudication process through a 

challenge-defense mechanic that incentivizes players to challenge 

each other on mathematical grounds and reply with mathematical 

justifications for their play.   

 

• Reward System Principle: Every mathematical task should have a 

potential reward for its successful performance, and a minimal cost 

for unsuccessful performance.  The rewards should not themselves be 

opportunities for more reward, but rewards in and of themselves.  
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Rewards should impact future play and all rewards and costs should 

be commensurate with the difficulty of the task.   

 

• Discovery & Reflection Principle: The feedback provided by the 

game should stimulate discovery and reflection on the part of the 

player.  Players may ignore overt instruction and feedback that is too 

much like a textbook or disrupts how the game flows.     

 

• Variety Principle: The game should provide as many opportunities 

to learn as possible.  Stagnation occurs when the game seems to be 

the same for too long (Fullerton, 2008).  In a multiplayer tabletop 

math learning game, the use of random events and player choices, 

actions, and interactions can enhance the variety and avoid 

stagnation.  The game should avoid unnecessary repetition in task 

types, and the game should leverage multiple representations to give 

players the impression that there are many different tasks.   

 

• The Virtuous Cycle Principle: The game should provide the player 

with control, choice, and creativity in a cycle.  Players are given some 

influence, which leads to meaningful choices, which brings their 

creativity to bear, and produces more (or different) control.   

 

• Flow Principle: The game should immerse the players in a flow 

experience that sustains their engagement with embedded 

mathematical activities throughout the duration of the game.   

 

Flow is a subjective experience which occurs when an individual is 

deeply immersed in an activity and their sense of time and space 

becomes distorted, they perceive the activity as intrinsically 

rewarding, and they become confident that they can overcome any 

challenge presented in the activity (Csikszentmihalyi, 1991; 

Nakamura, & Csikszentmihalyi, 2009).  Keller and Landhäußer (2012) 

argue that the conditions believed to be necessary for a flow 

experience can be reduced to perceived challenges matching an 

individual’s perceived skills. 

 

Renne (2019, Chapter 2) describes three factors that can contribute to 

player-perceived difficulty of a game: cognitive load, tension, and 
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stability of game interactions.     

 

Cognitive load is of three types: extraneous, intrinsic, and germane 

(Leppink, Paas, Van der Vleuten, Van Gog, & Van Merriënboer, 2013; 

Zhang, Ayres, & Chan, 2011).  Extraneous load represents the 

cognitive effort that is strictly unnecessary to learn the material.  

Intrinsic load is the cognitive effort that is inherent to learning the 

material.  Germane load is the cognitive effort for organizing patterns 

and making connections.  In a learning environment, germane 

cognitive load is usually desirable, while extraneous cognitive load is 

generally undesirable (Leppink et al., 2013).   

 

The game should balance these three kinds of cognitive load.  

Removing all extraneous cognitive load is unrealistic because it is a 

game (Renne, 2019, Chapter 2), and it might even be well tolerated 

(Zhang et al., 2011).   

 

Renne (2019, Chapter 2) describes two types of tension that might 

arise during the play of an educational mathematics game: positive 

tension and negative tension.  Examples of positive tension include 

that tension which might arise out of nearness to goal completion or 

the anticipation of achievement.  Examples of negative tension include 

that tension which might arise out of a drive for loss avoidance or a 

fear of failure.  Rather than eliminating tension, a mathematics 

learning game should strive to balance it so that players do not 

become stressed.   

 

Fullerton (2008) describes a reinforcing mechanism as one that allows 

the game to amplify effects, usually in favor of the successful player, 

and may lead to instability.  A balancing mechanism is one that 

mitigates a reinforcing mechanism and restores stability.  A stable 

system for interactions in a multiplayer tabletop mathematics 

learning game is one that does not allow one player to compound 

their successes in a way that makes it impossible for other players to 

catch up.   

 

While most of these components may be perceived by players as part 

of “difficulty,” they are made distinct by Renne (2019, Chapter 2) to 
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provide a means of analysis for designers of mathematics learning 

games that refines the notion of game difficulty and the flow 

experience. 

 

 

Renne (2019, Chapter 2) proposes that the last three principles contribute to 

a player’s willingness and motivation to play the game.  To provide a language for 

understanding player views of their willingness or motivation to play a mathematics 

learning game, Renne (2019, Chapter 2) uses the framework provided by the 

expectancy-value theory of achievement motivation.  Expectancies relate to a 

learner’s beliefs about their abilities and likely outcomes if they engage in a 

particular activity (Wigfield & Eccles, 2000).  Task-values are subjective, and have 

four components: attainment value, intrinsic value, utility value, and cost (Wigfield & 

Eccles, 2000).  A slight modification of the original use in Wigfield and Eccles (2000) 

is helpful for the context of math learning games.  Renne (2019, Chapter 2) points 

out that attainment value could be to overcome all the game’s challenges (“beating 

the game”), intrinsic value could be “enjoyment” of the game, and utility value could 

be the perceived effectiveness in the game’s ability to help that player learn the 

mathematics.  Together, a player’s expectancies for success and their value of a 

game as a task in and of itself, comprise that player’s subjective gameplay-value.   
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Research questions 

 

The present study attempts to investigate how a multiplayer tabletop 

mathematics learning game can be developed and refined to meet the design 

challenge of embedding multiple representations of functions that are categorized 

by the signs of their first and second derivative within that game, through 

representation translation tasks that require matching, in a way that engenders 

student perceptions of gameplay-value while maintaining opportunities for 

productive disciplinary engagement in mathematics. 

Question 1: How can a multiplayer tabletop mathematics learning game be 

effectively structured to embed gameplay tasks that require students to 

interpret graphical function behavior across a wide variety of 

representations and contexts? 

 

Question 2: How can a design experiment methodology be leveraged to 

inform game modifications that maintain or increase gameplay opportunities 

for productive disciplinary engagement while also enhancing the subjective 

gameplay-value to players? 

 

Question 3: Do participant perceptions of the gameplay-value, based on a 

final playtest of the refined game, support the modifications made to the 

game during the design process? 

 

Methodology 

 

This study used a design experiment to iteratively refine the card game 

Curves Ahead!.  Each iteration step in the design experiment included a playtest, and 

each playtest had a different set of participants, treatment, instrumentation, 
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procedure, and analysis of the data.  Results will be reported and explained between 

playtests and may include design activities that are different from the playtest. 

 

Curves Ahead! before the first playtest 

 

The card game, Curves Ahead!, is designed for precalculus and calculus 

students7 using the design principles from Renne (2019, Chapter 2) and outlined 

above.  The game requires players to match a given graphical representation of a 

mathematical model to one or more cards that describe a representation that is 

tabular, symbolic, verbal, or physical.  The players (or teams) take turns and try to 

collect as many points as possible by making correct matches.  Players have assets 

in the form of tokens that give them a temporary strategic advantage over their 

opponents.  The game also includes a mechanic that incentivizes players to catch 

erroneous play through a challenge-defense mechanic.  This mechanic awards 

players that successfully challenge erroneous play or successfully defend against 

erroneous challenges.   

 

Game concept 

 

The core mechanic in this game is matching.  Players have a hand of playing cards, each with a representation of a 
mathematical model or function that may be in the form of a table of coordinate pairs, symbols or an equation, a story 
or context, or a physical representation (see  

Figure 1).  Each card describes a function for which the signs of its first and second derivative do not change over its 
domain.  The graph of each function, then, will be one of the four shapes in  

                                                           
7 The original design was for calculus students, but the design experiment revealed a wider applicability. 
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Figure 2, which is on the card to be matched (called the target card or curve 

card).   

 

   

  

 

 

Figure 1: Sampling of playing cards that shows the kinds of function representations in 
the game Curves Ahead! 

 

    
 

Figure 2: The four orientations of the curve card. 

 

The initial game concept had a deck of target cards and a deck of playing 

cards.  The idea at that time was for the players to draw a target card and match 

their playing card to it, then repeat by drawing a new target card.  However, any one 

of the four shapes can be rotated in 90∘ increments to obtain any other, so that the 
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game only needs one target card.  This was the first design pivot.  It was a significant 

observation because it simplified the game concept considerably and improved the 

flow of the gameplay.  Flow is a kind of immersion or intense focus that might cause 

distortion of an individual’s sense of time and place (Csikszentmihalyi, 1991).  

Improving the flow is expected to contribute positively to the subjective gameplay-

value (Renne, 2019, Chapter 2). 

 

Proto game 

 

A deck of 48 square playing cards, 1 square curve card, and rules were 

printed as the proto game.  The rules of the proto game dictated that players must 

be seated so that each of them would see a unique orientation of the curve card that 

was placed face up in the center (Figure 3).  Seven cards would be dealt to each 

player, and each turn would deplete each player’s hand by the one card they played.   

 

Figure 3: The proto game required different seating arrangements for different 
numbers of players. 

 

All players that matched the curve card would earn a point during that turn 

(represented by collecting the card).  Playing cards had card numbers that served 

two roles.  One role was to look up the matching graph in an answer key.  The 
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second role was an ordering of the cards that depended on the difficulty of the 

mathematical task.  The matching card with the highest card number earned that 

player the control of the curve card orientation for the next turn.     

 

Cards were to be played in turn, face up.  The played cards would then be 

judged for correctness, with points awarded for catching erroneous matches.  

Judgements were to be done by players in order of least total points to highest so 

that players that had fewer points would have an opportunity to catch up.  The game 

ended when all card hands were entirely depleted, and the player with the most 

points was declared the winner. 

 

Early trials of the proto game 

 

The first trial playtests were conducted by the creator of the game and a 

content expert.  There was an early realization that this version of the game had 

induced cognitive overload, violating one of the design principles (Chapter 2).   

 

Each player was seated so they would see a different orientation of the target 

card, which would force each player to play a match to a different graph.  The 

challenge-defense mechanic that awarded points for finding player errors meant 

that players would have to judge each of their opponents from a different 

perspective (see Figure 4).  It seemed likely that this arrangement would require 
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most non-experts to walk around the table and check each card with an alternative 

orientation, and each judgement was expected to be a difficult task for a typical 

player.  This was also thought to be disruptive to the game flow and the flow 

experience.   

 

Figure 4: The proto game had each player matching a different curve card orientation. 

 

To reduce the intrinsic cognitive load, the rules were changed so that the 

curve card would be placed standing up for all players to see the same orientation.  

This pivot was expected to reduce the complexity of judging opponent plays and 

maintain game flow, and therefore increase subjective gameplay-value (Renne, 

2019, Chapter 2).  With the curve card standing up, players would not be required to 
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sit in a rigid formation, but the card would need to be placed so everyone could see 

it.   

 

There were two additional pivots as a result of this proto game playtesting 

that serve as an example of the interdependence of game features.  One change was 

a response to the ease with which a player could memorize the matches based on 

card numbers, which is a failure in adjudication (see Chapter 2).  To combat this 

exploit, a decision was made to incorporate four-digit card identifiers that were 

randomly generated.  However, randomizing the card identifiers meant that the card 

numbers would no longer reflect difficulty.  To address this consequence, the next 

change was to explore the possibility of assigning point values to each playing card 

that depended on mathematical difficulty.  This change is consistent with the view 

that in-game achievements can generate further engagement with a game (Chou, 

2015).  However, this was a difficult choice because of the worry that this might 

seem to players as arbitrary or unfair.   

 

As it pertains to maintaining flow, another realization was that playing cards 

in turn allowed for off-task diversions while a player waited for the preceding 

player(s) to make their selection.  Subsequent play could depend on previous play, 

so there would be little motivation to engage with one’s hand while waiting for 

preceding players to make their choices.  Such diversions reduce game flow, and as a 

result, subjective gameplay-value decreases (Renne, 2019, Chapter 2).   
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A pivot was made so that players would make and play their selection at the 

same time.  To allow for differences in processing time, players would play their 

card face down so others would not be able to base their decision on present 

selections of their opponents.  This has its significance in the fact that the highest 

valued matching card would win the round.  If a player saw the values of the cards of 

their opponents, that would provide them an exploit.  Players, being likely to 

observe such exploits as a means of in-game survival (Koster, 2013), would then 

refuse to be the first to play their cards.  Such a refusal would cause a stall in 

gameplay, which would reduce flow and then subjective gameplay-value.   

 

Note the example of an entanglement in the game mechanics.  Playing the 

cards in turn means that seeing other player choices informs strategy as play 

proceeds to manage the depleting resource (cards in hand).  This has the potential 

to enrich the gameplay experience by adding depth of possibility to one’s gameplay 

strategy.  However, increasing intrinsic and germane cognitive load and reducing 

extraneous cognitive load by playing cards at the same time, means that a feature 

before the pivot becomes an exploit after the pivot.   

 

Game prototype for the first playtest 
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The game prototype featured tokens that would give players temporary 

strategic advantage against their opponents.  This choice was in the service of 

increasing subjective gameplay-value by introducing a virtuous cycle (Renne, 2019, 

Chapter 2) that was missing from the early trial game.  The tokens also facilitated 

the orchestration of mild tension (Renne, 2019, Chapter 2) that did not rest solely 

on the educational task of matching function representations.  There were four 

circular tokens: 

• The shield token allowed the player to play a mismatching card so that 

it could not be challenged.  The player would discard their played card 

without earning a point that turn. 

• The wild token had an image of the curve that is on the curve card.  

This token allowed the player to play a card that did not match the 

curve card but guarantee a match by rotating the token to the 

orientation that matches the playing card.  Error could be challenged. 

• The ‘+2’ token increased the point value of the played card by two 

points. 

• The rotate token allowed the player to rotate the curve card after all 

players had played their intended matches.  None of the effected 

players could be challenged, but they also could not match the card 

after it had been rotated.  If multiple rotate tokens were played 

simultaneously, the player with the lowest total score earned was able 

to rotate the curve card while all others lost their token as a wasted 

play.   

 

 

The tokens were to be played face down with the player cards and revealed 

at the same time as the playing cards.  The tokens could only be played once per 

game and were expected to introduce positive tension and reduce negative tension.  

Incorporating features that were more in the service of the game than in the service 
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of the learning goals was an intentional choice with the hope of increasing 

subjective gameplay-value.  However, there was some concern that the tokens may 

have substantially increased the extraneous cognitive load within the game. 

 

Playtest I 

 

The first playtest had participants provide real-time feedback and discussion 

during the gameplay.  The primary focus of the playtest was to examine game 

features in accordance with Renne’s design principles (Renne, 2019, Chapter 2), 

with particular attention to subjective gameplay-value. 

 

Participants 

 

The first playtest of the prototype game was conducted with six players with 

a strong mathematical background and an interest in teaching mathematics.  The 

small number of players during this activity is in keeping with the recommendations 

from Middleton et al. (2008) and Norman (2013).  An important advantage of 

playtesting with these individuals was that they could play the game without 

spending considerable cognitive effort to attend to the mathematics.  This would 

allow for discussions of the qualities of the game in terms of subjective gameplay-

value. 
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Treatment 

 

An explanation of design principles from Renne (2019, Chapter 2) was 

provided to participants to frame the discussion during gameplay.  The rules of the 

game were explained by the creator before play began, and participants played the 

card game Curves Ahead!.  The specific version of Curves Ahead! that they played is 

summarized below: 

• The curve card (or target card) would be standing with the same 

orientation for all players during a turn. 

• Players would have 7 cards in their hand and play one each turn. 

• Cards would be played face down. 

• If a player wanted to use one of the four tokens (described above), 

they would do so by playing it face down with their card. 

• After everyone played their card, all cards and tokens would be 

played face up. 

• All effects from tokens would be resolved before judging cards played.  

• Players would collect cards they won through correct matches or 

through the challenge-defense mechanic.    

• Control of the orientation of the curve card for the next turn was 

granted to the player that won the most points during the present 

turn. 

• The game would end when all card hands were depleted. 

• The winner was the player with the most points.   

 

Instruments 

 

This playtest used a moderated group discussion during gameplay, to 

capture feedback that surfaced naturally within the context of the game.  This 

allowed real-time attention to how an event or feature in the game impacted the 
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subjective gameplay-value.  Some of the players also had experience teaching 

mathematics, which enabled strands of commentary that hypothesized how a 

typical student might engage with the game.   

 

Questions that were asked of the participants during the discussion were in 

response to player statements or conversation.  Since the conversation could not be 

predicted in advance, question types were devised, rather than a list of specific 

questions.  This strategy is consistent with an unstructured interview that can be 

useful in gaining insight into the perceptions of participant experiences, and the 

question types form an agenda for the interview (Zhang & Wildemuth, 2009).   

 

Question types served two similar and overlapping purposes: comparing the 

actual gameplay experience to the predicted gameplay experience and gaining 

potential insight into impacts the gameplay experience might have on subjective 

gameplay-value.  Most questions either requested a suggestion for an alternative to 

the implicated design feature, or an elaboration, specification, or clarification of 

what was said.   

 

Curves Ahead! was designed with the intention of conforming to the design 

principles put forth by Renne (2019, Chapter 2), but assessing conformance to some 

of those design principles requires input from players (e.g., the perceived fairness of 

the rules or perceptions of flow).  For example, if a participant were to indicate that 
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the rules were unfair, then a question from the moderator might be, “can you 

elaborate on what you think is unfair?”  A follow up to the answer to that might be, 

“what would you propose as a potential alternative to make it more equitable?” 

 

One desirable quality of an educational math game is that learners will be 

interested in playing (Renne, 2019, Chapter 2).  To investigate how the gameplay 

experience might impact subjective gameplay-value for the game Curves Ahead!, 

statements from participants that spoke to the design principles related to 

subjective gameplay-value, and flow in particular, were given special attention.  

Statements regarding flow (e.g., cognitive load or difficulty) were given the most 

attention due to its perceived importance in the design of learning games (Renne, 

2019, Chapter 2).  For example, if a participant were to indicate that the game is too 

hard, then a question from the moderator might be, “what do you think is making 

the game particularly difficult?” or “what do you think could make the game easier?” 

If a participant were to indicate that the mathematics is too hard, then a question 

from the moderator might be, “how do you think the game could provide scaffolding 

for the mathematical tasks?”  The term, “scaffolding,” would have been familiar to 

these participants.  With other participants, that question might be split into 

multiple parts that might begin with, “what could the game provide in order to help 

you get started on that mathematical task?”   
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Adhering to the advice of Gaydos (2015), the focus of the questions was the 

possible deficiencies in the design of Curves Ahead!  According to Gaydos, this “is the 

first step for improving it” (Gaydos, 2015, p. 481).   

 

Procedure 

 

The creator of the game explained the design principles around which the 

game was created in order to frame the in-game discussion.  This explanation lasted 

45 minutes.  While participants were aware of the design principles, the principles 

were not explicitly discussed during the in-game discussion.  Following the 

exposition, participants were informed that one aim of their playtest was to improve 

the quality of the game.  They were explicitly encouraged to freely provide their 

opinions as to deficiencies that they perceived in the game design and how 

improvements could be made.   

 

The rules of the game were thoroughly explained before the gameplay.  The 

explanation of the rules included an explanation of the core mechanic with some 

example cards, and an explanation of the tokens with their effects (without offering 

possible strategies of playing with them).   

 

The participants played in pairs, so that the game was played by three teams 

of two players each.  This allowed observation of meaningful discourse between 
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players that might not exist if they played alone.  It was hypothesized that the 

players would discuss game strategy and mathematics in an integrated way to 

coordinate their play as team members.  This was expected because the players had 

a strong background in calculus, which reduced the likelihood that mathematical 

discussions would occur naturally and spontaneously if they played alone.   

 

During gameplay, participants openly discussed the game and the 

mathematics with each other and the moderators.  The discussion, which bore 

resemblance to an unstructured interview with an agenda, was moderated by the 

creator of the game and a mathematics education researcher that specializes in the 

use of technology tools in mathematics classrooms.  While the presence of the 

creator of the game may have negatively affected the transparency of the dialogue, 

the discussion was able to produce actionable feedback to enhance subjective 

gameplay-value (evidenced below).  There was great care taken to avoid defending 

the design of the game or explaining design choices to encourage transparency in 

the dialogue.  Defense of the game design could lead to a (sub)conscious submission 

to the designer who may be perceived as an authority in the discussion.   

 

The agenda in moderating the discussion consisted of capturing the feedback 

from participants that spoke to the design principles broadly, or to design principles 

related to subjective gameplay-value specifically.  Specific areas of focus included 

cognitive load and flow.  Notes were taken to record the feedback, but notes were 
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not verbatim.  Rather, notes described the feedback provided by the participants as 

well as answers to the questions that were asked of the participants.  Immediately 

following the game, the moderators discussed their individual views of the 

discussion and gameplay.  More details were added to the notes after the debrief. 

 

Data analysis 

 

Each feedback item was analyzed as to its implications regarding the game’s 

conformity to the design principles in Renne (2019, Chapter 2), with a focus on 

subjective gameplay-value.  Data that addressed the design principles of flow, the 

virtuous cycle, or variety were given the highest priority, in that order.   

 

For example, if feedback indicated that the game was too hard or the 

cognitive load was too high, then there is a possibility that flow needed to be 

improved in order to increase subjective gameplay-value.  If the feedback indicated 

a sense of powerlessness in the face of changing conditions, then players needed to 

be given more control, choice, or creativity to enhance the virtuous cycle, and hence 

increase subjective gameplay-value.  If the feedback indicated that the game failed to 

offer new opportunities for growth or learning (i.e., the game stagnated), then 

variety needed to be increased in order to increase subjective gameplay-value.   
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Results of the first playtest and subsequent design pivots 

 

Table 5 summarizes the feedback provided by the participants during their 

playtest of Curves Ahead!, along with design implications and the affected category 

of design principles in Chapter 2.  Some of the feedback is categorized as general 

design if it was unrelated to the design principles in Chapter 2 and it was related to 

general design practices (for examples, see Norman, 2013).  The table is loosely 

ordered thematically by the type of feedback, but overlap does exist.  The first three 

items are generally touching on game appeal, items 4 thru 9 are organizational in 

nature,  items 10 thru 12 are addressing tension and stability, and items 13 thru 20 

regard the complexity introduced by the tokens.   

 

Some trends that stand out in the player feedback include the concern over 

extraneous cognitive load and tension, as well as a desire to ensure adequacy of 

balancing mechanisms.  The first feedback item is particularly noteworthy and was 

monitored carefully during subsequent playtests.  That participant expressed a fear 

of failure and stress arising from loss avoidance, so this was coded with the design 

implication of reducing negative tension.  The hope was that other design pivots 

might reduce the negative tension that player-learners might feel.   

 

Table 5: Descriptions of the feedback from the first playtest of Curves Ahead! 

 Description of Feedback Design Implications Affected Category 



112 

 

 

1 Feeling too much pressure. Reduce negative tension. Subjective Gameplay-
Value 

2 Many of the cards did not require 
calculus knowledge. 

Broader educational 
reach. 

General Design 

3 Inverse functions should be 
included in the game.   

Improve variety. Subjective Gameplay-
Value 

4 The answer key should be 
picture-based. 

Simplify adjudication.   Feedback System 

5 Make the playing cards 
rectangular, like a standard deck, 
to make them easier to hold and 
read. 

Reduce extraneous 
cognitive load.   
Improve sensory design.8   

Subjective Gameplay-
Value 
General Design 

6 Create a discard pile to organize 
play. 

Reduce extraneous 
cognitive load.   

Subjective Gameplay-
Value 
General Design 

7 The order of play is too chaotic. Reduce extraneous 
cognitive load.   
Simplify the rules.   
Simplify adjudication.   

Subjective Gameplay-
Value 
Rules 
Feedback System 

8 There is too much going on in the 
game. 

Reduce extraneous 
cognitive load. 

Subjective Gameplay-
Value 

9 There are too many strategies 
that are unrelated to the 
mathematics. 

Reduce extraneous 
cognitive load.   
Increase germane 
cognitive load. 

Subjective Gameplay-
Value 

10 Replenish the hand after each 
turn to replace the played card. 

Provide a balancing 
mechanism.   
Reduce negative tension. 

Subjective Gameplay-
Value 

11 The player should be allowed to 
swap unwanted cards with 
undealt cards. 

Provide a balancing 
mechanism.   
Increase positive tension.   
Reduce negative tension.  

Subjective Gameplay-
Value 

12 Limit the time that players have 
for selecting a card and token to 
play. 

Provide a reinforcing 
mechanism.   
Increase tension. 
Maintain flow. 

Subjective Gameplay-
Value 

 

 

Table 5: Continued 

13 Multiple rotate tokens played in 
the same turn should cancel each 
other. 

Improve fairness in the 
rules.   
Reduce negative tension.   

Rules 
Subjective Gameplay-
Value 

14 The rules for the rotate token are 
too complicated. 

Reduce extraneous 
cognitive load.   
Simplify the rules. 

Subjective Gameplay-
Value 
Rules 

15 Four tokens each, played in only 
seven turns, makes for too many 

Reduce extraneous load.  
Simplify the rules.   

Subjective Gameplay-
Value 

                                                           
8 Sensory design is the design of a product around the physical senses of its users. 
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tokens.  Maybe only two or three 
each. 

Possibly reduce positive 
tension. 

Rules 
Subjective Gameplay-
Value 

16 It should be allowable for a player 
to play multiple tokens in one 
turn. 

Increase positive tension.     
Increase extraneous 
cognitive load. 

Subjective Gameplay-
Value 

17 The tokens can be removed. Reduce extraneous 
cognitive load.   
Reduce tension.   
Reduce the virtuous cycle. 

Subjective Gameplay-
Value 

18 To reduce tokens, the game 
should only give a token to the 
player with the lowest total score 
after each turn. 

Provide a balancing 
mechanism.   
Possibly reduce positive 
tension. 

Subjective Gameplay-
Value 

19 The rotate token should only be 
given to the player with the least 
total points at some designated 
point in the game. 

Provide a balancing 
mechanism.   
Reduce positive tension. 

Subjective Gameplay-
Value 

20 There should be a bluff token.  
One which does nothing, but since 
it is played face down, it can 
impact play. 

Increase positive tension. 
Add to the virtuous cycle. 

Subjective Gameplay-
Value 

 

 

Feedback items 2, 3, and 4 were accepted for future versions of the game to 

capitalize on the design implications indicated in the table, but they would not be 

present until the third playtest.   

 

Feedback items 5, 10, 13, and 20 were tentatively accepted for future 

versions of the game with an aim to increase subjective gameplay-value, pending 

what the second playtesting group indicated. 

 

There was no action taken for feedback items 6 and 12.  Both suggestions 

were such that players could spontaneously organize in accordance with those 

desires without intervention from the designer.  The institution of time limits was 
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recommended in all play tests by some of the players, but not the majority.  This 

recommendation was ignored in all playtests on the grounds that players can decide 

this for themselves during play, and that it could lead to bottom-feeding or bullying.  

Bottom-feeding in a game occurs when a player takes advantage of one or more 

opponents that are not as well-equipped or skilled in the gameplay.  Bottom-feeders 

exploit the gap in skills and resources that may exist between them and their 

opponents.  An educational math game that supports bottom-feeding could lead to 

anxiety for those subjected to it.  Bottom-feeding may enhance subjective gameplay-

value for some players, but it would be at the expense of other players.  Design 

choices that support bottom-feeding are undesirable for an educational math game.  

The choice to ignore this feedback was a nontrivial decision because players may 

disengage while waiting for their opponents to make choices, possibly reducing 

subjective gameplay-value.  

 

Feedback item 7, unordered play causing chaos, could have led to a potential 

design pivot and was to be monitored in subsequent playtests.  This version of the 

game had no order of play for making matches or playing tokens, one order of play 

for the challenge-defense mechanic, and yet another order of play for tiebreakers to 

determine control of the curve card.  No suggestion was provided by the 

participants as to what could improve this.  It was possible that this feedback item 

was related to the reinforcing mechanism that gave control of the curve card 

orientation for the next turn to the player with the most points in the present turn.   
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The first few versions of the game had no order of play for making matches, 

one order of play for the challenge-defense mechanic, and another order of play for 

tiebreakers to determine which player would control the curve card.  Players 

appeared to prefer an order for making matches and playing tokens, and no order 

for the challenge-defense mechanic.  Distribution of the control of the curve card 

addresses these preferences. 

 

The design implications for feedback items 8, 11, 18, and 19 were thought to 

be addressable through other design pivots.  It seemed that the cognitive load 

reductions in other areas might alleviate the feeling expressed in item 8.  There was 

a possibility that replenishment of the player hand might obviate the need for 

swapping unwanted cards (item 11).  Improving the mechanics built around the 

tokens in other ways was expected to address items 18 and 19.   

 

Feedback item 9 was potentially of serious concern.  Game strategies being 

unrelated to the mathematics could lead to cognitive overload and disengagement.  

However, the feeling could have been a result of player expectations as (future) 

educators of mathematics students.  It could be that the players expected the game 

to feel more demanding mathematically or more focused on the mathematics.  The 

decision was made to wait and see how calculus students felt about gameplay 

strategies during subsequent playtests.   
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It was decided that a temporary pivot based on feedback items 14 and 15 

would be made for the next playtest to see how calculus students might perceive the 

experience.  That is, to see if calculus students agreed that doing so would increasing 

subjective gameplay-value.  This pivot was made by removing the rotate token from 

play during the second playtest.   

 

Feedback items 16 and 17 were deferred with a wait-and-see approach.  

Allowing players to play multiple tokens in one turn (item 16) only adds to the 

extraneous cognitive load, which was a recurring concern in the feedback.  Multiple 

tokens as an idea was also something players could spontaneously decide as a kind 

of “house rule.”   

 

Removal of the tokens (item 17) would reduce the extraneous cognitive load 

as desired, but the reduction would not warrant contravention of two important 

design principles.  Following the recommendation would remove most of the 

tension in the game and dramatically inhibit the virtuous cycle of control, choice, 

and creativity.  The decision was made that removing the tokens would be too costly 

in terms of subjective gameplay-value. 

 

Playtest II 
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The second playtest had participants provide real-time feedback and 

discussion during the gameplay and a brief discussion following play.  The primary 

focus of the playtest was to examine game features in accordance with Renne’s 

design principles (Renne, 2019, Chapter 2), with particular attention paid to 

subjective gameplay-value. 

 

Participants 

 

The second playtest was conducted with four differential calculus students at 

a four-year university in the Pacific Northwest.  The advantage of playtesting with 

differential calculus students is in their being members of the population of learners 

that the game is designed to serve. 

 

Treatment 

 

The rules of the game were explained by the creator before play began, and 

participants played the card game Curves Ahead!.   

 

Two aspects of the game were changed from the first playtest and enacted 

for this playtest, to provide scaffolding that might address the concerns that the 

cognitive load was too high.  This was done by removing the cards that required 
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calculus for the first game and removal of the rotate token.  The specific version of 

Curves Ahead! that they played is summarized below: 

• The curve card (or target card) would be standing with the same 

orientation for all players during a turn. 

• Players would have 7 cards in their hand and play one each turn. 

• Cards would be played face down. 

• If a player wanted to use one of the three tokens, they would do so by 

playing it face down with their card. 

• After everyone played their card, all cards and tokens would be 

played face up. 

• All effects from tokens would be resolved before judging cards played.  

• Players would collect cards they won through correct matches or 

through the challenge-defense mechanic.    

• Control of the orientation of the curve card for the next turn was 

granted to the player that won the most points during the present 

turn. 

• The game would end when all card hands were depleted. 

• The winner was the player with the most points.   

 

Instruments 

 

There were two moderated group discussions that took place during this 

playtest.  One discussion was during gameplay, and the other followed gameplay.  

Since the participants were differential calculus students, their background 

knowledge was not strong enough to engage in both the mathematical tasks and a 

thorough discussion related to the game itself during gameplay.  In order to 

facilitate their focus on the mathematical tasks that occurred during the game, much 

of the moderated group discussion during the game attended to adjudication of play 
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and to clarify rules.  Immediately following the gameplay, another moderated group 

discussion took place which focused on the game design.   

 

For both discussions, question types were devised, instead of a list of specific 

questions.  This strategy accommodated the unpredictable nature of the 

conversations and is consistent with an unstructured interview that has an agenda 

(Zhang & Wildemuth, 2009).  Questions that were asked of the participants during 

the first discussion were only in response to player statements or conversation, and 

they were kept to a minimum to avoid disrupting the gameplay.   

 

Question types served three similar and overlapping purposes: following up 

on specific feedback items from the first playtest, comparing the actual gameplay 

experience to the predicted gameplay experience and gaining potential insight into 

impacts the gameplay experience might have on subjective gameplay-value.  If a 

question was intended to follow up on feedback from the first playtest, then it would 

have wording like, “What do you think about X?” or “Some players have suggested X, 

what do you think?”  Here, “X” is a stand-in for prior feedback or a potential design 

change that arose out of prior feedback.  If a question was not related to prior 

feedback, then the question either requested a suggestion for an alternative to the 

implicated design feature, or an elaboration, specification, or clarification of what 

was said, in a manner consistent with the questions asked during the first playtest. 
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Like the first playtest, the questions in the discussions in this playtest 

focused on the possible deficiencies in the design of Curves Ahead!   

 

Procedure 

 

The game took place in week 9 (of 10) during the fall quarter and was played 

for a total of 50 minutes.  The creator of the game explained the rules of the game 

and included an explanation of the core mechanic with some example cards, and an 

explanation of the tokens with their effects (without offering possible strategies of 

playing with them).  The rotate token was not described to them and they were 

unaware of its existence.   

 

The participants played in pairs, so that the game was played by two teams of 

two players each.  This allowed further scaffolding so that players could cooperate 

on the mathematical tasks.  The players had a weak background in calculus and the 

pairing was intended to reduce the cognitive load during play.   

 

Participants were informed that one aim of their playtest was to improve the 

quality of the game.  They were explicitly encouraged to freely provide their 

opinions as to deficiencies that they perceived in the game design and how 

improvements could be made.  Participants were not aware of the design principles 

and the principles were not explicitly discussed during the moderated discussions. 
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The discussions were moderated by the creator of the game.  As in the first 

playtest, the presence of the creator of the game may have negatively affected the 

transparency of the dialogue.  However, the discussion was able to generate useful 

feedback to increase subjective gameplay-value (evidenced below).   

 

Most of the participants’ in-game discussion was related to the mathematics, 

rather than gameplay.  During play, most of the moderator involvement was to 

assist with adjudication and rules.  After their first game concluded, the participants 

were asked if they would play again, but with the inclusion of the cards which 

required calculus knowledge.  They were interested to see more and responded 

positively to the request.  After only two rounds of play (the second not fully 

completed), the players asked to stop because it was too hard.  The postgame 

discussion commenced at that point.  Most questions from the moderator occurred 

during the postgame discussion.   

 

The postgame moderated group discussion was directed at the game design, 

in the manner of an unstructured interview with an agenda as discussed above.  

However, there was one student that asked for explanation of a key mathematical 

concept that arose in the game and was relevant to her differential calculus 

coursework.  A concept she claimed to find confusing for most of the term (the 

relationships between position, velocity, and acceleration).  The other players took 
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initiative in attempting to explain the concept to her, followed by a wrap-up 

explanation from the moderator.   

 

To follow up on feedback from the first playtest and to gain insight into the 

potential impact of changes that were made between playtests, players were made 

aware of the rotate token and the scaffolding choice which separated the calculus 

cards from the main deck of cards.  These points were only made during the 

postgame discussion. 

 

The postgame discussion would cycle through a question from the 

moderator, followed by each participant having an opportunity to respond to the 

moderator and each other.  Questions from the moderator either probed prior 

commentary in the manner outlined in the agenda or followed up on feedback items 

from the first playtest. 

 

Notes were taken during the discussions in the same manner as the first 

playtest.   

 

Data analysis 
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Data analysis following the second playtest was the same as that which 

followed the first playtest, with the addition of follow up feedback items from the 

first playtest. 

 

Results of the second playtest and subsequent design pivots 

 

Table 6 summarizes the feedback provided by the participants during the 

second playtest of Curves Ahead!, along with design implications and the affected 

category of design principles in Chapter 2.  Some of the feedback is categorized as 

general design if it was unrelated to the design principles in Chapter 2 and it was 

related to general design practices (for examples, see Norman, 2013).  The table is 

ordered so that items discussed as follow up and prompted by the moderator 

appear first, prepended by an “F”.  The feedback descriptions are numbered in 

continuation of the feedback from the first playtest.  Recurring feedback across both 

playtests that was spontaneously offered by participants in the second playtest are 

not prepended with an “F,” but given a new number and emphasized.   

 

 

 

Table 6: Descriptions of the feedback from the second playtest of Curves Ahead! 

 Description of Feedback Design Implications Affected Category 

F-5 Make the playing cards 
rectangular, like a standard deck. 

Reduce extraneous 
cognitive load. 
Improve sensory design. 

Subjective Gameplay-
Value 
General Design 
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F-7 The order of play is too chaotic. Reduce extraneous 
cognitive load.   
Simplify the rules.   
Simplify adjudication.   

Subjective Gameplay-
Value 
Rules 
Feedback System 

F-
10 

Replenish the hand after each 
turn to replace the played card. 

Provide a balancing 
mechanism.   
Reduce negative tension. 

Subjective Gameplay-
Value 

F-
11 

The player should be allowed to 
swap unwanted cards with 
undealt cards. 

Provide a balancing 
mechanism.   
Increase positive tension.   
Reduce negative tension.  

Subjective Gameplay-
Value 

F-
13 

Multiple rotate tokens played in 
the same turn should cancel each 
other. 

Improve fairness in the 
rules.   
Reduce negative tension.   

Rules 
Subjective Gameplay-
Value 

F-
15 

There were a good number of 
tokens at three each. 

Reduce extraneous load.  
Simplify the rules.   
Possibly reduce positive 
tension. 

Subjective Gameplay-
Value 
Rules 
Subjective Gameplay-
Value 

F-
17 

The tokens should not be 
removed. 

Increase extraneous 
cognitive load.   
Increase tension.   
Increase the virtuous 
cycle. 

Subjective Gameplay-
Value 

F-
19 

The rotate token can be given to 
the player with the least total 
points at some designated point in 
the game. 

Provide a balancing 
mechanism.   
Reduce positive tension. 

Subjective Gameplay-
Value 

F-
20 

There should be a bluff token.  
One which does nothing, but since 
it is played face down, it can 
impact play. 

Increase positive tension. 
Add to the virtuous cycle. 

Subjective Gameplay-
Value 

21 Limit the time that players have for 
selecting a card and token to play. 

Provide a reinforcing 
mechanism.   

Subjective Gameplay-
Value 

22 It takes a few turns to realize how 
to play the game. 

Incorporate scaffolding in 
the rules. 

Rules 

23 Player personality impacted 
motivation. 

Alter game concept. Implementation Principles 

24 Point values on the non-calculus 
cards are appropriate. 

Rewards appropriately 
tied to performance of 
educational task. 

Feedback System 

25 Point values on the calculus cards 
are too low. 

Rewards not appropriately 
tied to performance of 
educational task. 

Feedback System 

26 The calculus cards are extremely 
difficult. 

High germane cognitive 
load.   

Subjective Gameplay-
Value 
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During the game, one of the few comments that were made regarding the 

game design was provided by the pair of students that were performing better than 

the other (i.e., “winning”).  They spontaneously declared that turns should have a 

time limit, which indicates a risk of cognitive disengagement for players if there is a 

significant difference in skill within the game.   

 

The second group of playtesters mostly agreed with the first group on each of 

the follow-up items.  Unlike the first playtest group however, the second group was 

disappointed that the rotate token was removed and insisted that tokens should 

remain in the game. 

 

Follow-up items 5, 10, 13, and 20 were supported by the feedback in the 

second playtest, leading to design pivots for the third playtest in order to increase 

subjective gameplay-value.  Item 7 continued to lack a clearly beneficial solution, 

and the design implications for item 11 was again considered to be addressable 

through another design pivot.   

 

Follow-up items 15, 17, and 19 produced another pivot in that players would 

be directed to select only three tokens with which to play.  Follow-up item 17 

indicated that players wanted access to the rotate token.  Follow-up item 19 was 

considered by the playtesters to be suboptimal to everyone having the rotate token, 

but better than no one having it.  The pivot to having players select three tokens of 
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their choice at the beginning of the game would balance the desire of players to have 

access to the rotate token, while maintaining the number of tokens in play at 3 per 

player.  This change was made with the intention of increasing subjective gameplay-

value.     

 

Feedback item 21 was rejected for the same reason as item 12 in the first 

playtest.  It is listed as a separately numbered item because it was spontaneously 

offered by the playtesters.    

 

Feedback item 22 was noteworthy in two respects: it reflects an early 

concern from the first playtest regarding the difficulty of the game, and the 

participants were at a level for which the game was designed.  Rather than changing 

the design of the game, it was decided to change the explanation of the game during 

implementation.   

 

Feedback item 23 implicates implementation guidelines more than it does 

game design changes.  Player personality is a component of any game, whether 

cooperative or competitive.  The only pivot which would fully insulate players 

would be to make the game for one player.  The decision was to reject this as it was 

not informative for the intended design and use of the game as a multiplayer game.   
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Feedback items 24, 25, and 26 were highly informative to the game design.  

The game at that point had the symbolic calculus playing cards (as in Figure 5A) 

valued at 2 points.  Players were reporting that these cards were extremely difficult 

for them and that they should be worth more points.  The cards worth the maximum 

of 5 points were the story problems with related rates that could be matched 

without calculus (as in Figure 5B).  This feedback resulted in an important design 

pivot in order to enhance the support offered by the game (see Chapter 2), as well as 

an intended improvement in subjective gameplay-value (item 26). 

 

  
(A) (B) 

  

Figure 5: (A) Symbolic calculus cards valued at 2 points, and (B) Story problems with 
related rates at 5 points. 

 

The playing card point values were initially chosen to reflect the intrinsic 

cognitive load.  However, the processing required to acquire the schema (i.e., the 

germane cognitive load) involved in matching the symbolic card seemed to be 

substantially higher than was anticipated.  It was decided to increase the point value 

of the symbolic calculus playing cards by one point.  This choice was motivated by 

trying to balance the player experience of difficulty with encouraging them to 
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perceive that the task should be easier than many of the others.  Upon acquisition or 

automation of an appropriate schema, the symbolic cards will feel easier to players 

and a maximum point value may not seem fair to them.     

 

In contrast, the players reported that the related rates tasks were also very 

hard, but they felt accomplished when they made a match.  They felt that the reward 

for those cards should be the maximum.  It seems that they were at least 

subconsciously aware of the intrinsic cognitive load associated with matching the 

related rates cards.  It was decided to keep the point values for the related rates 

cards at the maximum of 5 points. 

 

Refinements in preparation for the final playtest 

 

There had been several changes made to the game before the third and final 

playtest.  The playing cards were professionally printed, and the shape of the 

playing cards had been changed from square to rectangular (similar to regular 

poker-sized playing cards).  Four-digit randomized identifiers had been assigned to 

the cards for reference for judging correct matches.  The deck was also split into two 

parts: 48 playing cards did not use any calculus terminology or notation, and 24 

cards did use calculus language and symbols.  These card counts reflected an overall 

increase in the types of mathematical tasks represented on the cards.  Inverse 
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function tasks (8), related rates tasks (8), and duplicates of some easy cards (8) 

were added to the deck.  

 

Point values had been changed as discussed above, and the inverse function 

tasks had different point values depending on whether they required calculus.  The 

inverse function tasks that did not require calculus were valued at 3 points and the 

inverse function tasks that did require calculus were valued at 5 points.   

 

The collection and play of tokens had also been changed.  A bluff token was 

added to the game.  The bluff token is a token that is played and has no action.  Since 

the tokens are played face down, playing a bluff token might alter the choices of 

other players as they contemplate the possibility that the token may have some 

effect.  The effect of playing the rotate token was also simplified so that two or more 

rotate tokens played on the same turn simply canceled each other.  The game rules 

were also changed so that players would secretly select three of the five possible 

tokens at the beginning of the game and discard the others.   

 

The rulebook formally recognized the way players were treating challenges 

during playtesting.  The initial design had players make challenges in order of least 

total points to greatest.  This was done to introduce a balancing mechanism.  

However, during playtesting, players spontaneously reverted to a chaotic, “first-
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come, first-serve.”  The rulebook was changed so that the former design was the 

recommendation, rather than a prescription.   

 

The rulebook also included an answer key that was organized visually.  Each 

of the four orientations of the curve card was pictured and occupied a quadrant of 

the rulebook page.  Under each picture was a list of all card identifiers that match 

that orientation.  Players were instructed to look for the picture that matched the 

curve card, and then look up the identifier number of the card they were checking.   

 

During previous playtesting, the likelihood of being able to match an 

arbitrary orientation of the curve card became quite low as the player’s hand 

became depleted.  A balancing mechanism of replenishing the hand during play was 

also adopted.  Instead of dealing seven cards and depleting the hand until there 

were none, the players would deal 5 cards and replenish the one they played by 

drawing a new playing card between turns.  Each player would have 5 cards to 

choose from each turn.  Replenishment significantly reduced the likelihood of not 

having any correct match during a turn. 

 

Playtest III 

 

The third and final playtest was conducted in a differential calculus class as 

an in-class activity, with a follow up survey to obtain feedback.  The aim of the third 
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playtest was to ascertain whether design pivots that arose out of prior playtests 

might increase the subjective gameplay-value of Curves Ahead!  Data were collected 

seeking indications of each of the following: 

• improvements in the design of Curves Ahead! resulting from design 

pivots made in response to recurring feedback across the first two 

playtests, 

• subjective gameplay-value (either they would play it again or they 

would recommend it to others), and 

• ability beliefs and utility values in order to provide a means of 

interpreting the gameplay-value indicators. 

 

Participants 

 

The formal playtest was conducted with 29 participants from a differential 

calculus class that was taught by one of the game designers at a two-year 

community college in the Pacific Northwest.  The game was played as the daily in-

class activity for that class period.  The students were grouped so that four tables 

had six players (3 teams of 2) and one table had five players (2 teams of 2 and an 

individual).  Three experienced calculus teachers, including the instructor of the 

class, circulated around the room and observed the participants in the five games.  

The instructor of the class was also the primary developer of the game. 
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Treatment 

 

The rules of the game were explained by the instructor (and game developer) 

before play began, and participants proceeded to play the card game Curves Ahead!.  

The specific version of Curves Ahead! that they played is summarized below: 

• The curve card (or target card) would be standing with the same 

orientation for all players during a turn. 

• Players would have 5 cards in their hand, play one each turn, and 

draw a replacement at the end of the turn. 

• Cards would be played face down. 

• Players selected 3 of the 5 tokens before the game began.   

• If a player wanted to use 1 of the 3 tokens, they would do so by 

playing it face down with their card. 

• After everyone played their card, all cards and tokens would be 

played face up. 

• All effects from tokens would be resolved before judging cards played.  

• Players would collect cards they won through correct matches or 

through the challenge-defense mechanic.    

• Control of the orientation of the curve card for the next turn was 

granted to the player that won the most points during the present 

turn. 

• The game would end after 7 rounds. 

• The winner was the player with the most points.   

 

Instruments 

 

A questionnaire (Appendix D) was administered immediately following the 

gameplay to determine participant perceptions of gameplay-value.  The questions 

are provided and explained below.  The order of the questions was a combination of 
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thematic ordering and formatting considerations to optimize the use of space on the 

printed survey.   

1. How difficult was it to learn how to play the game (independent of the 

mathematics)? 

Response choices:  Too easy / Just right / Too hard 

 

This question attempted to follow up on prior concerns that indicated 

the game might be too hard to learn for a typical student.  It could also 

be used to assess extraneous cognitive load (Leppink, Paas, Van der 

Vleuten, Van Gog, & Van Merriënboer, 2013).  In the context of a game, 

it is desirable to have the game difficulty between too easy and too 

hard (Fullerton, 2008; Salen & Zimmerman, 2004). 

 

2. How difficult was the math? 

Response choices:  Too easy / Just right / Too hard 

 

This question attempted to determine player perceptions of 

mathematical difficulty and could be used to assess intrinsic cognitive 

load (Leppink et al., 2013).  In the context of a game, it is desirable to 

have the game difficulty between too easy and too hard (Fullerton, 

2008; Salen & Zimmerman, 2004). 

 

3. Did the experience feel like a game or more like a dressed-up math 

activity? 

Response choices:  Felt like a game / Felt like a dressed-up math activity 

/ Unsure 

 

This question attempted to address a common concern in game-based 

learning literature (e.g., Habgood & Ainsworth, 2011; Lee et al., 2014; 

Lee & Doh, 2012; Smith & Mann, 2002; Weitze, 2014).  Though 

responses to this question would be subjective in nature, positive 

results (“Felt like a game”) would be a possible indicator of success 

within the domain of game-based learning research more generally.   

 

4. Do you feel like you learned mathematics as a result of the experience?   

Response choices:  Not at all / A little / Some / A lot / Unsure 
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This question attempted to find evidence of utility value, with positive 

responses indicating possible usefulness of the activity in attaining 

goals (Wigfield & Eccles, 2000).  This question could also be used to 

assess germane cognitive load (Leppink et al., 2013). 

 

5. Do you feel that the experience strengthened existing mathematical 

understanding? 

Response choices:  Not at all / A little / Some / A lot / Unsure 

 

This question attempted to find evidence of utility value, with positive 

responses indicating possible usefulness of the activity in attaining 

goals (Wigfield & Eccles, 2000).  This question could also be used to 

assess germane cognitive load (Leppink et al., 2013). 

 

6. To learn the mathematics presented in the game, would you rather play 

this game, work on a typical worksheet activity, attend lecture, or do 

something else entirely? 

Response choices:  This was best / Typical activity is best / Lecture is 

best / Other (what?)  

 

This question attempted to find evidence of utility value, with positive 

responses (“This was best”) indicating possible usefulness of the 

activity in attaining goals (Wigfield & Eccles, 2000).   

 

7. How has your confidence regarding the mathematical material 

changed? 

Response choices:  Lower confidence / No change / Higher confidence 

 

This question attempted to find evidence of changes in ability beliefs.  

Positive answers would indicate possible improvements in the 

participant’s view of their mathematical ability (Wigfield & Eccles, 

2000) that they might attribute to the game.   

 

No item was included on the questionnaire to assess participant 

perceptions of whether success is likely or not.  While ability beliefs 

and expectancies of success are technically different, Eccles and 

Wigfield (2002) point out that “in real-world achievement situations 
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they are highly related and empirically indistinguishable” (p. 119).     

 

8. Ideally, how many times should this game be played in a term? 

Response choices:  0 / 1 / 2 / 3 / 4 or more 

 

This question attempted to assess the degree to which a participant 

valued the gameplay by evaluating interest.   

 

9. Ideally, where would you rather play this game? 

Response choices:  In class / Outside of class / Both / Unsure 

 

This question attempted to find evidence for enhanced subjective 

gameplay-value (Renne, 2019, Chapter 2), but the final print of the 

survey mistakenly omitted the response choice of “I would rather not 

play the game.”  As a result, participants may interpret this question in 

light of a perceived expectation that the game must be played 

somewhere.  For example, they may interpret the question as akin to, 

“If you were to play this game somewhere, where would it be?”   

 

Question 9 was removed from the analysis due to this mistake.   

 

10. How likely would you be to request that we play this game in class 

again? 

Response choices:  Not at all likely / Somewhat likely / Highly likely / 

Unsure 

 

This question attempted to assess the degree to which a participant 

valued the gameplay by evaluating interest. 

 

11. How likely would you be to recommend that others play this game in 

future classes? 

Response choices:  Not at all likely / Somewhat likely / Highly likely / 

Unsure 

 

This question attempted to assess the degree to which a participant 

valued the gameplay by evaluating their likelihood to recommend the 

game. 
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12. How did you feel about the game overall?  

Response choices:  It was no fun at all. / It was a little fun. / It was fun. / 

It was so much fun that I’d play this game in my free time with my 

friends. / It was only fun when compared to my typical experiences in a 

math class. / Other (please specify):  

 

This question attempted to assess the degree to which a participant 

valued the gameplay by evaluating perceived enjoyment. 

 

Like question 3, the response to this question would be entirely 

subjective in nature, but positive results would be a possible indicator 

of success within the domain of game-based learning research more 

generally.   

 

13. What could make the experience feel more like a game, and/or make it 

more fun?   

Response choices:  Open response 

 

This question attempted to gain insight into responses to questions 3 

and 12.  It was attempted to supplant the group discussion that was 

not feasible as a result of the group size.   

 

Procedure 

 

As in the previous playtests, the rules were explained before play, with 

examples.  Unlike the first two playtests, the players were advised to deal six cards, 

and play the first round as practice.  They did not replenish the card that was played 

during this practice round.  This was intended to scaffold the game to reduce the 

number of turns it took players to learn the mechanics and how to play.  This was 

also the first playtest where adjudication would involve the answer key.  No 
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adjudication was provided by the teachers.  The questionnaire was administered 

immediately following the gameplay. 

 

Data analysis 

 

The data were analyzed with subgroupings of survey items that were 

intended to assess player perceptions of cognitive load, interest in playing the game, 

utility value, and one survey item was intended to assess a player’s self-perceived 

change in confidence.  The subgroupings are as follows: 

• Questions 1, 2, 4, and 5 were combined to assess cognitive load, which 

would reveal something about flow (Renne, 2019, Chapter 2), and 

hence gameplay-value.   

• Questions 3, 8, 10, 11, and 12 were combined to evaluate whether 

participants would be interested in playing the game again (or 

recommending it to others).   

• Questions 4, 5, and 6 were combined to assess utility value.   

• Question 7 was used to assess changes in ability beliefs that the 

participant might attribute to the game.   

 

Question 9 was omitted from the analysis, due to the printing error mentioned 

above. 

 

Results of the third playtest and subsequent design pivots 

 

Most groups were only able to complete one game, and one group played 

approximately half of a second game.   



138 

 

 

 

Completed questionnaires were obtained from 26 of the players (two of the 

students were below the age requirement and one chose not to take part in the 

questionnaire).  The questionnaire results are reported in the tables below  (Table 7 

and Table 8).  The first table reports the response counts for the first 12 items. 

 

Table 7: Responses to questionnaire following the third playtest of Curves Ahead! 

 Question Responses (count) 

1 How difficult was it to learn how to play the 
game (independent of the mathematics)? 

Too easy (2);     Just right (24);     Too hard (0) 

2 How difficult was the math? Too easy (1);     Just right (24);     Too hard (1) 

3 Did the experience feel like a game or more 
like a dressed-up math activity? 

Felt like a game (21);      
Felt like a dressed-up math activity (4);    
Unsure (1) 

4 Do you feel like you learned mathematics as a 
result of the experience? 

Not at all (1);     A little (7);     Some (15); 
A lot (3);     Unsure (0) 

5 Do you feel that the experience strengthened 
existing mathematical understanding? 

Not at all (0);     A little (3);     Some (14);      
A lot (8);     Unsure (1) 

6 To learn the mathematics presented in the 
game, would you rather play this game, work 
on a typical worksheet activity, attend 
lecture, or do something else entirely? 

This was best (14);      
Typical activity is best (6); 
Lecture is best (1);      
Other (what?) (4 combos of other three) 

7 How has your confidence regarding the 
mathematical material changed? 

Lower confidence (0);     No change (8); 
Higher confidence (18) 

8 Ideally, how many times should this game be 
played in a term? 

0 (0);     1 (3);     2 (8);     3 (11);     4 or more (4) 

10 How likely would you be to request that we 
play this game in class again? 

Not at all likely (0);     Somewhat likely (16);      
Highly likely (9);     Unsure (1) 

11 How likely would you be to recommend that 
others play this game in future classes? 

Not at all likely (0);     Somewhat likely (4);      
Highly likely (21);     Unsure (1) 

12 How did you feel about the game overall? It was no fun at all (0);     It was a little fun (2);     
It was fun (16);      
It was so much fun that I’d play this game in my 
free time with my friends. (3); 
It was only fun when compared to my typical 
experiences in a math class. (5); 
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The results from the first subgrouping (questions 1, 2, 4, and 5) suggest that 

the cognitive load of the game may be well tolerated.  However, it is unclear whether 

or to what degree each design pivot might explain this finding.  For example, rules 

were simplified, the playing card shape was changed to a rectangle and 

professionally printed (making it easier to hold and read the card), and there was an 

extra “practice round” at the beginning of the game (reducing the number of turns to 

learn the game). 

 

The results from the second subgrouping (questions 3, 8, 10, 11, and 12) 

suggest a modest degree of interest in playing the game.  The responses to question 

8 suggest that the participants may want to play multiple times.  The responses to 

questions 3, 10, and 12 appear to be less enthusiastic than their responses to 

question 11.  Taken as a subgrouping, it appears that participants were more likely 

to recommend the game to others than to ask to play again.  The results may also 

suggest that the participants may only want to play the game on one occasion (e.g., 

one class period).   

 

The results from the third subgrouping (questions 4, 5, and 6) suggest that 

participants see a modest degree of utility value for attaining their learning goals (a 

component of subjective task-value).  Given that 23 of the participants said that the 

ideal number of times to play was 2 or more (item 8) and that most only played the 

game once, it seems that this task-value is related to playing again, rather than 
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having just played it moments before.  This supports the interpretation of the 

results from the second subgrouping.    

 

Table 8 summarizes and discusses the responses to item 13, which 

attempted to gain insight into possible reasons for participant responses to items 3 

and 12.  Most participants provided no more than one response.  The discussion for 

each response is included in the right-hand column.   

 

Table 8: Responses to item 13. 

Response (count) Discussion 

Timer or time limit (8) This was a surprisingly widespread 
recommendation, including during gameplay.  This is 
a request for more tension and a reinforcing 
mechanism.  This was rejected due to the possibility 
for negative ramifications.   

Increase competition (4) Players wanted more competitive interactions.  This 
seems to be a request for more tension. 

Class-level prizes (3) Players wanted extra credit or other boosts to their 
course grade as a result of stellar performance in the 
game.  This has implementation implications. 

Spread out control of the curve card (2) This was only expressed by two players during 
playtesting, but it was something we considered in 
the creation of the game. 

More story problems (1) This is a request for more variety and more difficulty.  
This may result in more content. 

More tokens (1) This request indicates that tokens need more 
attention.     

A plot (1) It is not clear what the player meant by this 
comment.  It may be that they are asking for a 
storyline or narrative.  Doing so would significantly 
alter the game concept.     

Math refresher (1) This has implementation implications. 

Put it on the internet (1) This player may be indicating their personal 
preference for digital games over tabletop games.    
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The player feedback indicating that control of the curve card orientation 

should be spread around was interesting in that it was rare, but something that was 

thoroughly considered during the design.  The game to this point, had no order of 

play for making matches or playing tokens, one order of play for the challenge-

defense mechanic, and yet another order of play for tiebreakers to determine which 

player would control the curve card.  Players appeared to prefer an order for 

making matches and playing tokens, and no order for the challenge-defense 

mechanic.   

 

Distribution of the control of the curve card can address the first of those two 

player preferences.  A pivot was made to rotate control of the curve card so that 

each turn has a new person controlling the orientation, with the intention of 

enhancing subjective gameplay-value through a balancing mechanism.  The new 

rule also indicates that players take turns to play their matching card and token.  

This change has a significant balancing effect, but it also reduces tension, so the 

potential effect is currently unclear.  The rulebook now states both variants with a 

recommendation for rotating control among the players each turn. 

 

The tokens have shown themselves to be an important part of increasing the 

potential for the perceived gameplay-value of Curves Ahead!.  However, coordinating 

the tokens with the game concept in a balanced way has proven difficult.  During 

this playtest, the players expressed doubts to each other about whether they could 
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optimally choose tokens for the game.  The combination of observations during all 

playtests led to a further alteration.  The latest change to the game has removed the 

‘+2’ token and gives players all four tokens, with the intention of simplifying the use 

of the tokens.  The reasoning behind this choice is that the simplicity may enhance 

flow through a reduction in cognitive load or angst associated with token selection, 

which would increase subjective gameplay-value.   

 

Conclusion 

 

The present study intended to answer three questions: 

1. How can a multiplayer tabletop mathematics learning game be 

effectively structured to embed gameplay tasks that require students 

to interpret graphical function behavior across a wide variety of 

representations and contexts? 

2. How can a design experiment methodology be leveraged to inform 

game modifications that maintain or increase gameplay opportunities 

for productive disciplinary engagement while also enhancing the 

subjective gameplay-value to players? 

3. Do participant perceptions of the gameplay-value, based on a final 

playtest of the refined game, support the modifications made to the 

game during the design process? 

 

Concluding remarks for question 1 

 

Curves Ahead! is designed so that the mathematical task of translating 

between function representations is embedded within the game task of matching.  A 

player has a hand of cards which has various functions represented in words, tables, 
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symbols, or situations, and they must select one that matches a given graph.  There 

are 72 playing cards, with a wide variety of function representations and contexts.  

The point value of each playing card corresponds to either intrinsic cognitive load or 

germane cognitive load, and players are motivated to make matches (i.e., translate 

between function representations) by the game goal of maximizing point earnings.  

Incorporating a challenge-defense mechanics further motivated student 

engagement with representation translation tasks by incentivizing them to judge 

each other’s plays.  The challenge-defense mechanic also provided the students with 

opportunities for meaningful mathematical discourse while they made and 

defended challenges.   

 

Concluding remarks for question 2 

 

The iterative natures of game design and design experiments in educational 

research suggest that a design experiment could be used to iteratively refine the 

mathematics learning game Curves Ahead!  Six design activities were presented, that 

could potentially be used to guide the iterative design process for the game: identify 

(or alter) possible learning goals, develop (or modify) a game concept, produce (or 

modify) a proto game, playtest the proto game, develop (or modify) a game 

prototype, and playtest.  These design activities may occur in cycles or in a 

nonlinear order.  Indeed, the design of Curves Ahead! followed the trajectory: 

(i) identify learning goals 

(ii) develop a game concept 
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(iii) produce a proto game 

(iv) playtest the proto game 

(v) develop a game prototype 

(vi) playtest 1 

(vii) modify the game prototype (design pivots) 

(viii) playtest 2 

(ix) modify the game concept (replenish hand) and prototype (multiple 

design pivots) 

(x) playtest 3 

(xi) modify a portion of the game concept (control of curve card) – stop. 

 

The first playtest sought feedback from stakeholders in the community of 

mathematics educators.  The second playtest sought feedback from a small subset of 

the target audience.  The third playtest sought feedback from an entire calculus 

class.  While the playtests could have been conducted with different participants in 

different ways, this combination and sequencing appeared to be helpful for the 

design of Curves Ahead!  The design of Curves Ahead! was relatively straightforward, 

as there were no indications during the playtests that any of the first three activities 

would need to be revisited.   

 

Concluding remarks for question 3 

 

Each playtest appeared to incrementally improve the game with respect to 

subjective gameplay-value.  The results from the third playtest suggest that overall 

views of subjective gameplay-value are moderately favorable for Curves Ahead!  To 

understand which aspects of the game contributed to this, the three design 
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principles of variety, the virtuous cycle, and flow will be examined in relation to 

implicated game features.  This is consistent with the view that these principles 

support subjective gameplay-value in a math learning game (Renne, 2019, Chapter 

2).    

 

The first and second playtests revealed that the tokens had a significant 

impact on subjective gameplay-value, and the second playtest suggested that the 

rotate token was particularly important.  The tokens increased both forms of 

tension but seemed to have more positive tension than negative tension.  In 

particular, the rotate token is likely to induce both forms of tension for the one that 

plays it, because it is played upside down.  It could be that another player plays a 

rotate token, causing a loss for both (negative tension).  Or, it could be that no one 

else plays a rotate token, potentially causing a significant gain for the one that plays 

it (positive tension).  Removal of the rotate token seemed to lead to disappointment, 

suggesting that it has more positive tension than negative.   

 

The tokens also enhanced the virtuous cycle through their strategic use.  For 

example, one player observed that if they played the wild token when someone else 

played the rotate token, the wild token would shield them from the negative effects 

of the rotate token.  Another strategy used was using the rotate token while also 

having control of the curve card.  That player oriented the curve card to one of the 

three orientations that they did not want, then played their card with a rotate token.  
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The other players matched the initial orientation, only to discover that the player in 

control of the curve card played the rotate token to specify its orientation (again) 

after everyone had played their card.  This appeared to garner emotional reactions 

in response to the unexpected (creativity), which suggests passionate involvement.   

 

While the tokens appeared to enhance the virtuous cycle and tension, they 

appeared to have made the game more complex.  That complexity increases the 

extraneous cognitive load, which could potentially reduce flow.  However, Zhang et 

al. (2011) provide an example that illustrates that players of learning games may 

tolerate some forms of extraneous cognitive load if the game absorbs their attention.  

The third playtest revealed that players generally tolerated the cognitive load in the 

game, but it is not clear whether the tokens were specifically tolerated in the same 

way as the game overall.   

 

The replenishment of the hand at the end of each turn seemed to increase 

subjective gameplay-value by giving more players more opportunities for control, 

choice, and creativity.  The replenishment also introduced an important balancing 

mechanism, and is expected to have reduced overall negative tension, by increasing 

the likelihood of having a matching play all or most turns.     

 

While each playtest group indicated a desire for more variety, the third 

playtest had only 1 out of 26 participants indicate that desire.  It seems then, that 
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the increase in variety from the second to the third playtest may have had a positive 

influence on subjective gameplay-value.     

 

Although it was not tested, it is hypothesized that distributing control of the 

curve card to each player throughout the game may reduce both forms of tension 

and have a positive balancing effect.  The expectation is that this change will provide 

a net increase to subjective gameplay-value.   

 

  The first two playtests focused on deficiencies, in alignment with the advice 

from Gaydos (2015).  According to Gaydos (2015), sharing those deficiencies can be 

an important part of game-based learning research.  The game elements in Curves 

Ahead! that were found to reduce subjective gameplay-value are listed here: 

▪ Removal of the tokens: discussed above. 

 

▪ Perceived unfairness in the use of tokens: the original rules for the 

rotate token resolved simultaneous play of a rotate token by giving 

the “power” to the player with the least total points earned (a 

balancing mechanism), and all other played rotate tokens would be 

“wasted.”  Players in the first playtest suggested that it would be 

preferable that all the played rotate tokens be “wasted” by canceling 

each other, or that the rotate token should only be given to one player 

in the game (the one with the lowest total score at some specified 

time).   

 

▪ Square cards: players found these uncomfortable to hold and due to 

the rotational symmetry of a square, players found them cumbersome 

to orient before reading.  Alternatively, a rectangular card that is the 

same size as a standard poker deck, will be more comfortable in the 

hand, and would either be right-side up or upside down, but never 
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sideways.   

 

▪ Chaotic order of play: the first few versions of the game had no order 

of play for making matches or playing tokens, one order of play for the 

challenge-defense mechanic, and yet another order of play for 

tiebreakers to determine which player would control the curve card.  

Players appeared to prefer an order for making matches and playing 

tokens, and no order for the challenge-defense mechanic.  Distribution 

of the control of the curve card can address the first of these 

preferences. 

 

▪ Depletion of the hand of cards: as the game developed, with control 

of the curve card going to the player that “won” the round, depletion 

of the hand meant that players became less likely to have a matching 

play and were unable to regain control of the curve card.  This 

reduced subjective gameplay-value.  Instead, reducing the size of the 

hand from 7 to 5, and replenishing the hand, significantly increased 

the likelihood of a matching play throughout the game.   

 

▪ No time limit on plays: each playtest had participants requesting a 

time limit for others to make a play.  Those participants were typically 

those that were “winning” in terms of points earned, which suggests 

that they wanted a reinforcing mechanism.  These participants also 

seemed to want to maintain their immersion in the game, instead of 

disengaging while waiting.  However, institution of a time limit is 

expected to introduce a form of negative tension for the “losing” 

players and might have an overall reduction in subjective gameplay-

value.  The negative tension could also cause a player to disengage 

from mathematical reasoning and sense making related to the 

embedded mathematics.  Although this seems to be a no-win 

situation, it may be possible to address this through implementation 

(e.g., matching players on skill in Curves Ahead!).   

 

▪ Mismatch between the difficulty and the reward: the participants 

in the second playtest (calculus students) indicated that the cards 

requiring calculus knowledge were too difficult, and they wanted to 

stop playing.  Elaboration on that subject revealed that the players felt 

that the points were not commensurate with the difficulty.  The point 



149 

 

 

values were changed to reflect the higher germane cognitive load, but 

also balance the low intrinsic cognitive load.  The third playtest gave 

no indication that there continued to be a mismatch between the 

reward and the difficulty.   

 

Implications for design 

 

The present study revealed significant interdependencies among game 

elements in the game Curves Ahead!  A recurring challenge in addressing participant 

feedback was the creation of a new deficiency, like trying to remove a bubble in 

wallpaper.  Improvements in one area sometimes reduced conformity to the design 

principles in other areas (e.g., distribution of control of the curve card).  And in at 

least one case (time limits), it seems impossible to adequately address the player 

experiences through design because of an inherent conflict in player values.  This 

gives rise to an important design question: “What should be done in response to 

conflicting design demands?”   

 

One way to address this question in the theory would be research into 

possible hierarchies for the design principles that might act as meta-principles that 

resolves such conflicts.  In the absence of such a hierarchy, clearly defined values 

and goals could be established before beginning the design process.  If design 

conflicts arise, or it seems impossible to meet the demands of all participants, the 

choice that seems most likely to support those values or advance those goals should 
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be made.  In Curves Ahead!, conflicting design demands were reconciled by giving 

precedence to supporting productive disciplinary engagement.     

 

Implications for implementation 

 

The present study also revealed the relatedness between the design of Curves 

Ahead! and its use in the class, giving rise to questions of implementation strategies.  

From the third playtest, it appears possible that a different way of introducing the 

players to the game Curves Ahead! may have had some positive impact on their 

perception of the game’s difficulty.  This was not a design choice, but an 

implementation choice.  Furthermore, the request for time limits seems to have 

been associated with success in the game.  One way of addressing the desires of 

these players would be in implementation.  For example, the teacher could match 

players based on success in playing the game, or those players that make faster 

decisions.  This would maintain the cognitive engagement of those players that want 

things to happen faster, while also allowing other players to spend more time 

deliberating.   

 

Coda 

The present study attempted to investigate the design and refinement of the 

function representations card game Curves Ahead!  A design experiment with 

playtests were used to gather player feedback to determine the degree to which 



151 

 

 

certain features in Curves Ahead! might maintain or increase opportunities for 

productive disciplinary engagement while enhancing player perceptions of 

gameplay-value.  That feedback informed subsequent design pivots in the 

refinement process of Curves Ahead!, which culminated in a version of the game for 

which students in a differential calculus class perceived gameplay-value.     
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CHAPTER 4: USING GAME-BASED LEARNING TO FOSTER PRODUCTIVE 
DISCIPLINARY ENGAGEMENT 

 

Introduction 

 

Teachers may be attracted to mathematics learning games with the idea that 

students will be more “engaged” and will find the experience “more fun” than the 

usual classroom activity.  But is this engagement in playing games really an effective 

use of class time?  That is, can playing a mathematics learning game genuinely 

support students’ learning of important mathematical content, or provide students 

with substantive experience with important mathematical practices? 

 

The use of a game to help students attain learning outcomes is known at 

game-based learning.  Renne (2019, Chapter 2) defines a game as a voluntary play 

activity in a pretended reality governed by rules, wherein the participant(s) try to 

achieve one or more goals, and where degrees of success in the attainment of goals 

are conveyed by a feedback system.  A learning game (or educational game) is a 

game with specified learning outcomes, and a mathematics learning game (or 

educational mathematics game) is a learning game in which the learning outcomes 

are in the domain of mathematics.  A digital game (or video game) is a game that is 

played on a computer, console, or mobile device, while a tabletop game is one that is 

usually played on a flat surface (e.g., card games and board games).   
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Much of the design and research attention in game-based learning to date has 

been given to digital learning games, and these games are usually intended for a 

single player (Ke, 2011).  Gee’s (2003) influential book describes learning principles 

that are embodied by digital games.  Devlin has used Gee’s principles (Devlin, 2011) 

in an ambitious (and expansive) project aimed at creating an exemplar in the game 

WuzzitTM Trouble, to illustrate the power of video game learning in mathematics 

(Kiili, Devlin, Perttula, Tuomi, & Lindstedt, 2015; Pope & Mangram, 2015).   

 

While such games may have potential for helping students meet 

mathematical content standards like those of the Common Core, mathematical 

practice standards imply interactions between the members of a mathematical 

learning community (of which both students and the teacher are participants).  For 

example, teachers that provide students the opportunity to “construct viable 

arguments and critique the reason of others” (Mathematical Practices Standard 3, 

The Common Core State Standards for Mathematics, by National Governors 

Association Center for Best Practices, 2010), are likely to be orchestrating an 

activity that encourages and supports students in that practice.  

 

Multiplayer tabletop games often involve many player-to-player interactions.  

(Indeed, one of the attractions to playing such games may well be the setting they 

create for socializing among friends.)  If designed appropriately, could a 

mathematics learning game in a multiplayer tabletop format offer special 
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affordances to support students’ productive engagement with mathematical ideas?  

That is, can a properly designed multiplayer tabletop mathematics learning game 

engage students in actions and interactions centered on mathematical sense making 

and reasoning, and encourage productive mathematical discourse? 

 

Renne (2019, Chapter 2) has proposed both design principles (for creative 

development by game designers) and implementation principles (for effective 

deployment by classroom teachers) for multiplayer tabletop educational 

mathematics games.  The design principles situate the mathematics content within 

the pretended reality of the game, convey progress to the player(s), and position the 

game so that players have interest in playing.  The design principles were devised to 

foster productive disciplinary engagement as proposed by Engle and Conant (2002), 

in the discipline of mathematics.  The implementation principles are intended for 

educators to make effective use of a game as a classroom activity, with special 

attention paid to supporting mathematical sense making during play in a way that 

fosters productive disciplinary engagement.  Both sets of principles attend to 

interaction dynamics that may arise during multiplayer games in a classroom 

setting. 

 

Productive disciplinary engagement is a construct that arose out of analyzing 

a class project in a fostering community of learners classroom (Engle & Conant, 

2002).  Engagement and its two modifiers, productive and disciplinary, need 
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unpacking.  By engagement, Engle and Conant mean “focused and active 

participation in the present discourse” (Renne, 2019, Chapter 2).  By disciplinary 

engagement, they mean, “contact between what students are doing and the issues 

and practices of a discipline’s discourse” (Engle & Conant, p. 402).  And they take 

productivity to be “intellectual progress” (p. 403).  Connecting productive 

disciplinary engagement to a mathematics learning game, Renne (2019, Chapter 2) 

views productive disciplinary engagement in mathematics as intellectual progress 

during or through a focused and active participation in the activity, while 

maintaining contact between what students are doing and the issues, practices, or 

discourse in mathematics.   

 

The study reported in this paper is an investigation of the effectiveness of a 

recently developed multiplayer tabletop calculus game called Assembly Lines to 

support productive disciplinary engagement in mathematics.  The game was 

developed using Renne’s design principles (Renne, 2019, Chapter 2), and a playtest 

involving student participants was conducted with Renne’s implementation 

principles in mind.  The game Assembly Lines involves players, either collaboratively 

or competitively, building piece by piece the graph of a piecewise linear function 𝑓.  

This graphically presented function 𝑓, in turn, must at times be interpreted by the 

players as the derivative of another function 𝐹, which gives players practice with a 

mathematical task which has been shown to cause students some difficulty (Orhun, 

2012).  The mechanics of the gameplay (in-game structured actions) of Assembly 
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Lines involve creating the graph of 𝑓 to achieve certain characteristics or satisfy 

properties or constraints of 𝐹, 𝑓, and 𝑓′ that are stated using the language and 

notation of calculus.   

 

The students’ engagement with, and discourse about mathematical ideas 

during the gameplay was of primary interest in this study, with special attention to 

the interactions of students with each other.  To evaluate the productivity (or 

“intellectual progress”) during gameplay, the students’ calculus content learning 

was also considered.  To frame the question of student engagement with 

mathematical ideas, the construct of productive disciplinary engagement is used 

(Engle & Conant, 2002).  This framework provides not only a useful language for 

describing students’ mathematical engagement, but also evidentiary indicators of 

that engagement.   

 

Engle and Conant (2002) point out that evidence of productive disciplinary 

engagement will depend on the discipline and that “expressions of engagement are 

both culturally relative and subject to interpretation” (p. 402).  However, they 

suggest some indicators of engagement that might be applicable somewhat broadly 

to students in the U.S and multiple disciplines.  Quoting Engle and Conant (2002): 

it [seems] appropriate to infer greater engagement to the extent 
that: (a) More students in the group sought to make, and made, 
substantive contributions to the topic under discussion; (b) 
students’ contributions were more often made in coordination 
with each other, rather than independently of each other…; (c) 
few students were involved in unrelated “off-task” activities; (d) 
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students were attending to each other as assessed by alignment 
of eye gaze and body positioning…; (e) students often expressed 
passionate involvement by making emotional displays…; and (f) 
students spontaneously got reengaged in the topic and 
continued being engaged in it over a long period of time. (p. 402) 
 

 

A multiplayer tabletop game, such as Assembly Lines, can give rise to player-

player interactions and player-teacher interactions that present opportunities for 

engagement with mathematical ideas.  The list of indicators provided by Engle and 

Conant (2002) is a helpful place to start when assessing the possible effectiveness of 

a math learning game to engage players with mathematical ideas. 

 

The four guiding principles for fostering productive disciplinary engagement 

 

Engle and Conant (2002) offer four guiding principles that they argue will 

foster productive disciplinary engagement: problematization, authority, 

accountability, and resources. 

▪ Problematization: “The core idea behind problematizing content is 

that teachers should encourage students’ questions, proposals, 

challenges, and other intellectual contributions, rather than expecting 

that they should simply assimilate facts, procedures, and other 

‘answers’” (Engle & Conant, 2002, p. 404, emphasis in original). 

 

▪ Authority: “The tasks, teachers, and other members of the learning 

community generally encourage students to be authors and producers 

of knowledge, with ownership over it, rather than mere consumers of 

it” (Engle & Conant, 2002, p. 404). 
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▪ Accountability: “Students’ intellectual work is made accountable to 

others and to disciplinary norms” (Engle & Conant, 2002, p. 405).   

 

▪ Resources: “Students are provided with sufficient resources to do all 

of the above” (Engle & Conant, 2002, p. 401). 

 

 

Renne’s design principles for multiplayer tabletop mathematics learning 
games 

 
 

Renne (2019, Chapter 2) proposes 10 design principles for the creation of 

tabletop math learning games to support productive disciplinary engagement in 

mathematics.  Those will be discussed briefly. 

• Mathematical Fidelity Principle: The game should remain faithful to 

the mathematics, and be free of mathematical errors, ambiguities, and 

sloppiness.  This design principle positions the game as a reliable 

source of mathematical information, making it a resource.   

 

• Cognitive Fidelity Principle: The game should remain faithful to the 

mathematics as perceived by the player.  While the mathematics could 

be correct, the game could give a player a false impression of some 

pattern or strategy that is local to the game and does not generalize to 

other mathematics contexts.  Like mathematical fidelity, this design 

principle positions the game to be perceived by the learner as a 

reliable resource.   

 

• Embedding Principle: The game should embed the mathematical 

content so that the game elicits the formulation of the mathematical 

tasks and problem statements from the player through their 

gameplay.  The game should not directly or overtly give the 

mathematical tasks or problem statements to the players.  This 

principle will assist learners in problematization. 
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• Rules Principle: The rules of the game should be simple, clear, 

consistent, and fair.  This design principle supports accountability.   

 

• Adjudication Principle: The game should adjudicate play fairly, 

correctly, and simply.  This aspect of adjudication makes the game a 

valuable resource, as it can provide learners feedback on their 

learning progress.   

 

Ideally, a tabletop math learning game would enable the players to 

adjudicate the gameplay themselves, which in turn would enable a 

teacher to have logistical flexibility (e.g., more time to facilitate 

discourse).  This aspect of adjudication would partly support 

authority, by giving players some “ownership” over the feedback 

process, and it could free the teacher up as a resource.   

 

• Reward System Principle: All mathematics tasks should have 

rewards and costs tied to successful (or unsuccessful) performance of 

those tasks.  All rewards and costs should reflect the difficulty of the 

task.  Costs should be minimal and can include loss of opportunities.  

These rewards and costs are a kind of feedback, which makes them a 

resource.  Rewards and costs reinforce successful performance and 

steer learners away from unsuccessful performance.   

 

• Discovery & Reflection Principle: The in-game feedback should 

stimulate discovery and reflection on the part of the player.  Such 

feedback is both a resource and positions the learner to be an author 

of their own knowledge.     

 

• Variety Principle: The game should provide many opportunities to 

learn.  A wide variety of learning opportunities is more likely to 

enhance subjective gameplay-value, which, in turn, promotes practice.  

This design principle supports the authority of the student.   

 

• The Virtuous Cycle Principle: The game should provide the player 

with control, which leads to meaningful choices, which in turn, 

motivates creativity.  This design principle supports the authority of 

the student.   

 



164 

 

 

• Flow Principle: The game should immerse players in a flow 

experience that sustains engagement with in-game mathematical 

activities for the entire game.   

 

Flow is a psychological experience which occurs when an individual 

becomes fully absorbed in an activity and their sense of time and 

space becomes distorted (Csikszentmihalyi, 1991; Nakamura, & 

Csikszentmihalyi, 2009).   

 

 

Renne’s implementation principles for multiplayer tabletop mathematics 
learning games 

 
 

Drawing on work done by Dick and Burrill (2016), Stein et al. (2008), Stein 

and Smith (1998), and the National Council of Teachers of Mathematics (NCTM, 

2014) Effective Mathematics Teaching Practices, Renne (2019, Chapter 2) proposes 5 

implementation principles for the use of multiplayer tabletop math learning games 

that are intended to support productive disciplinary engagement in mathematics.  

Those will be discussed briefly. 

• Timing Principle: Educators should use a game when the students 

are ready and timed to align with the curriculum.  Games that require 

learners to engage in mathematics tasks that are more complex than 

simply recall, are best done around the time of the instruction on the 

subject (Bright, Harvey, & Wheeler, 1985).  Timing the 

implementation of a game to a learner’s readiness will support their 

ability to become authors of their knowledge.   

 

• Planning Principle: Educators should plan for the implementation in 

terms of what the learners will need in order to successfully play the 

game and attain the learning goals.  Planning will provide learners 

with adequate resources to learn during the gameplay.  For example, a 
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reference sheet that is simple and easy to understand could facilitate 

completion of game tasks, without giving “the answers”.   

 

• Briefing Principle: The teacher should explain the rules of the game 

and how to play.  If a game or the mathematics is complex, then it 

might benefit the learners to play a practice round.   

 

The teacher should explain the mathematics involved to set learners 

up for connections to be made.  Longer explanations of the 

mathematics may require the briefing and game activity to be spread 

out over multiple class periods.  Additionally, complex games with 

new mathematics could cause the learners to feel overwhelmed 

before they even begin to play the game.   

 

If applicable, the teacher should explain any mathematical language or 

notation that is unfamiliar to the students and in the game.  

 

If applicable, the teacher should briefly explain how to use any 

external resources while playing the game.   

 

• Managing Gameplay Principle: The teacher should monitor 

gameplay and player-player interactions, clarify rules, assist with 

adjudication as needed, and facilitate the mathematical discourse 

when asked for help.  Interrupting gameplay might disrupt the flow of 

the game, and the flow experience.  Interruptions should only be done 

as a last resort to guide learners that have strayed too far from the 

intended mathematics or are repeatedly adjudicating incorrectly.   

 

Occasionally, learners may need to be matched up by the teacher to 

make the most effective use of the gameplay in terms of learning and 

potential for enjoyment.  This matching may be along prior 

performance on coursework, or it may be along prior gameplay 

success or preferences.  

 

If players get stuck with the mathematics tasks or how those tasks 

relate to the rules of the game, teachers can help by giving an 

indication of the potential utility of something that was said in the 

players’ conversation, bringing the players’ attention to relevant in-
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game resources that might be helpful, indicating that a move or 

strategy is possible, or indicating a move or strategy that is possible, 

all while avoiding giving the players “the answer”.   

 

• Debrief Principle: The teacher should follow gameplay with a 

debriefing session to help students make connections.  The debriefing 

session can include discussion of gameplay moments or strategies, or 

mathematical ideas related to the game.  The debrief should serve to 

help students make connections between the game and the 

mathematics.  It is possible to discuss student ideas that relate to 

mathematical ideas or related gameplay.  The debrief session could be 

a good time to select student ideas for discussion, sequencing those 

ideas, and then connecting those ideas to each other and the 

mathematics learning goals, as in Stein et al. (2008).   

 

 

The game, Assembly Lines 

 

The boardgame Assembly Lines is designed for integral calculus students 

using the design principles found in Renne (2019, Chapter 2) and outlined above.  

The game can be played by 1 or 2 players, cooperatively, competitively, or in teams.  

The game requires players to build the piecewise linear graph of a function 𝑓, which 

is understood to be the derivative of another function 𝐹, using line segments.  Points 

are scored by satisfying given local and global constraints to the functions 𝑓 and 𝐹 

and their derivatives.  Players try to earn as many points as possible while 

constraints are randomly generated, and resources (available line segments) 

dwindle.  The game also includes a challenge-defense mechanic for competitive play 

that incentivizes player participation in the adjudication process. 
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The mathematical tasks in Assembly Lines involve building a piecewise linear 

graph of a function 𝑓 to satisfy “local” or “global” constraints on one of the three 

functions: 𝐹 (whose derivative 𝐹′ = 𝑓), the function 𝑓 itself, or 𝑓′ (the derivative of 

𝑓).  Examples of local constraints include a given value of 𝑓 or 𝑓′ at some point, the 

value of the definite integral of 𝑓 over the interval spanned by a single linear piece of 

its graph, or a given location for a local extremum on the graph of any anti-

derivative of 𝑓.  Examples of global constraints include the value of the definite 

integral of 𝑓 over its entire (bounded) domain, a total number of local extrema on 

the graph of any anti-derivative of 𝑓, or a total number of inflection points on the 

graph of any anti-derivative of 𝑓.     

 

The learning outcomes include proficiency in identification of features and 

characteristics of a function given the graph of its derivative function and facility 

with the fundamental theorem of calculus.  The selection of the learning outcomes 

was inspired by research showing that calculus students struggle to build graphs 

when given constraints to satisfy (Baker, Cooley, & Trigueros, 2000), and research 

suggesting that students struggle to interpret the graph of the derivative function 

(e.g., Monk, 1992; Monk & Nemirovsky, 1994; Orhun, 2012).  The requirement that 

players interpret different representations of the same mathematical object also 

affords opportunities for engagement in “procedures with connections” (Stein & 

Smith, 1998, p. 10).   
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The game setting and mechanics were motivated by an important type of 

summative assessment question that has appeared on the released free response 

section of the Advanced Placement®,9 (AP®) calculus exams almost every year for 

the last 20 years.  The AP® exam question usually depicts a piece-wise function, 𝑓, 

such that all but perhaps one piece of the graph is linear, and the one non-linear 

piece is the arc of a circle or parabola.  The task commonly identifies a related 

function, 𝑔, that is defined as a definite integral function with 𝑓 as an integrand and 

upper limit variable.  Such a definition of 𝑔 implies that its derivative is 𝑓 by the 

Fundamental Theorem of Calculus.  The different parts of the question typically 

include evaluating 𝑔, 𝑔′, or 𝑔′′ at specific points, identifying local or global extrema, 

identifying points of concavity, and justifying those choices.  Student performance 

on this type of task suggests that it is indeed challenging for calculus students, and 

average scores on this exercise have hovered around 3.5 out of 9 possible points, 

with hundreds of thousands of students taking the AP® calculus AB exam each year.  

 

The core mechanics in Assembly Lines are building (the graph), collecting 

(cards/points), and managing dwindling resources (line segment pieces).  The game 

has the following hardware: 

• A Cartesian grid in the form of a rectangle with evenly spaced peg 

holes to form a 1:1 ratio in the scaling of the axes.  The portion of the 

                                                           
9 Advanced Placement and AP are registered trademarks of the College Board.  The use of these names 
does not imply any affiliation with or endorsement by the College Board. 
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Cartesian plane corresponds to [−10,10] × [−7,7] ⊂ ℝ × ℝ.   

 

• Flat line segment pieces, whose ends have circular holes and are 

designed to span peg holes spaced two horizontal units apart on the 

grid.  Each line segment has a length that will create a segment with 

one of these pre-defined slopes: 0, ±
1

2
, ±1, ±

3

2
, ±2, ±

5

2
, ±3, depending 

on whether the line segment slants up or down from the left to right.  

There are two line segment pieces available for each of these slopes.   

 

• Pegs that hold the line segments in place on the grid.  

 

(The rectangular grid board, the line segment pieces, and the pegs 

were all created using a 3D printing device.) 

 

• A set of playing cards present the local or global constraint statements 

that players try to satisfy as the game progresses.   

 

 

Assembly Lines has several variants to scale difficulty, but all of them share 

the same basic actions: collect constraint cards that are satisfied by building a 

continuous piece-wise linear derivative function, 𝑓, using the available line segment 

pieces so that each line segment spans an interval of length 2 in the horizontal axis.  

The game includes the fundamental assumption that 𝐹′ = 𝑓 is continuous.  

 

Each constraint card presents a single constraint that is either local to the 

line segment being played or global to the entire graph that has been built up to that 

moment.  Players may satisfy more than one constraint in a turn, which allows for 

players to collect more than one constraint card per turn.  To allow players to plan 
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future moves, there are always three or more constraint cards visible during play.  

The game ends when the graph is built for the entire domain [−10,10].   

 

Constraints require different interpretations and uses of the fundamental 

theorem of calculus.  Some constraints give the value of a definite integral, while 

others present the same task by giving the net change in 𝐹 over the same interval.  

Some constraints require evaluation of 𝑓 or 𝑓′, while others present the same tasks 

by having players evaluate 𝐹′ or 𝐹′′, respectively.  There are also tasks that constrain 

local extrema on the graph of 𝐹 and some cards that constrain inflection points on 

the graph of 𝐹.   

 

There are two types of game cards in Assembly Lines.  One type of game card 

involves satisfying mathematical constraints by strategic placement of a single line 

segment.  In the game, these are called segment cards, and they correspond to 

satisfying local constraints.  The other types of game cards involve a search across 

the domain of the function being built to determine if a constraint has already been 

satisfied by previous play or if strategic planning might lead to satisfying that 

constraint in the future.  These cards are called key point cards, and they usually 

correspond to satisfying global constraints.  Except in rare, usually serendipitous 

cases, these cards require analysis that spans multiple line segments.  The key point 

cards are intrinsically more difficult than the segment cards, so the segment cards 

are worth 1 point and the key point cards are worth 3 points. 
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Figure 6 illustrates the game during play (at the beginning of the 8th turn of 

10).  There are 4 stacks of constraint cards directly below the graph (from the 

perspective of the players).  The view in this figure is with the positive 𝑦-axis to the 

right and the positive 𝑥-axis downward.  From top to bottom of the figure, the first 

three stacks are the segment cards, and the fourth is a key point card.  The 

remaining stacks of cards around the board include cards out of play (face down) or 

cards that were earned (face up).  At the bottom of the figure is a reference sheet 

and the game pieces.   

 

 

Figure 6: View of a game of Assembly Lines in progress, from the side.  The positive 𝑥-
axis is pointing downward, positive 𝑦-axis is pointing rightward. 

 

Figure 7 is an enlarged view of the cards in play in the above figure, with the 

key point card in the bottom right of the figure below.   
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Figure 7: An enlarged view of the cards in play from the game shown in Figure 6. 

 

 



173 

 

 

Research questions 

 

There are two research questions in this study.  The first research question 

considers the potential for a game-based learning activity to foster engagement with 

mathematical ideas.  The second research question considers the degree to which 

that disciplinary engagement might be productive.   

Question 1: How can a game-based learning activity foster engagement 

with mathematical ideas? 

Sub-question 1.1: How can player contributions toward 

performing the mathematical tasks support engagement with 

mathematical ideas?  

Sub-question 1.2: To what extent will players stay “on task” 

relative to the mathematics?  

Sub-question 1.3: To what extent will players express 

“passionate involvement” during a math learning game? 

 

Question 2: To the extent that learners are engaging with 

mathematical ideas, how can a game-based learning activity foster 

productivity, or “intellectual progress”? 

Sub-question 2.1: How does performance transfer to 

mathematical tasks outside of the game? 

Sub-question 2.2: How does student dependence on in-game 

mathematical resources change over time? 

Sub-question 2.3: To what extent do players become more 

efficient in performing mathematical tasks during gameplay? 

 

Methodology 

 

Participants were administered a background questionnaire followed by a 

15-minute pretest using an AP® exam question of the type that motivated the design 
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of the game Assembly Lines.  The participants then played Assembly Lines in pairs 

for approximately 55 minutes.  All gameplay was video recorded.  After the 

gameplaying session, players were administered a 15-minute posttest, again using a 

different AP® exam question of the same type.  Participants were made aware 

before the pretest that the posttest would be administered following the gameplay. 

 

The background questionnaire collected demographic information, prior 

knowledge of integral calculus, gameplay habits, and goal orientations.  Goal 

orientation items were included to explore possible relationships between goal 

orientations and the performance measures that might suggest hypotheses for 

future studies.  The pretest and posttest were used to evaluate changes in 

performance that might be attributed to the gameplay.  Videos were used to collect 

and analyze discourse data and participant body language to find possible evidence 

for engagement with each other, the game, and mathematical ideas.   

 

Participants 

 

Volunteer participants were recruited from calculus courses at a university 

in the Pacific Northwest.  Twelve (12) students volunteered to participate in the 

study, all of whom had the pre-requisite knowledge to play the game (differential 

calculus and the fundamental theorem of calculus).  Of those 12, nine (9) of the 

participants were enrolled in a single-variable integral calculus class, two (2) had 
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been enrolled in the integral calculus class the previous term (quarter system), and 

one participant was enrolled in the integral calculus 3 years prior.  Four of the 9 

participants that were currently enrolled in the integral calculus class reported 

having learned about integrals prior to their current class.  None of the participants 

had taken the Advanced Placement® (AP®) exam prior to the study.   

 

Video recordings were made of all games, and two videos contained audio of 

the discourse.  Even the videos without audio contributed data to the player 

engagement and interaction analysis, for they showed body language and the 

physical actions of the players.  The body language can be evidence of engagement 

with each other and the game, and the gameplay can show evidence of possible 

“intellectual progress” (Engle & Conant, 2002).  

 

Age and gender demographic data were obtained by participant responses to 

a background questionnaire.  There were 6 female participants and 6 male 

participants, and ages ranged from 19 to 48 years, with 9 participants (4 female and 

5 male) between 19 and 22 years of age.   

 

The questionnaire also included an item to indicate the participant’s average 

time spent playing games of any kind.  Five (5) of the participants averaged less than 

30 minutes of gameplay per day and 7 of the participants averaged 30 minutes or 

more per day. 
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Instruments 

Data were collected using the following instruments: 

1. Background questionnaire:   

Questionnaire items (Appendix E) included 

 

a. Demographic information (gender and age), 

b. Prior knowledge of integral calculus and the recency of 

coursework in integral calculus, 

c. Gameplay habits (frequency and duration), and 

d. Goal orientations10 (collected to explore possible relationships 

between a player’s goal orientations and their performance 

measures, which might inform hypotheses for future studies).  

 

2. Pretest and posttest performance measures:   

Two AP® free-response questions (Appendix F) were used as pretest 

and posttest performance measures.  These questions were of the 

type that had motivated the creation of the Assembly Lines game, and 

hence, closely reflected the mathematics content addressed by 

Assembly Lines.  This provided an opportunity to look for transfer 

from the game through performance gains from the pretest to the 

posttest.  The AP® free-response questions chosen were from the 

examination years 2004 and 2012.  The AP® exam performance data 

available suggested that these problems were of roughly equal 

difficulty, and the tasks and graphs were highly similar. 

 

Procedure 

 

The study took place over two evenings of one week in mid-April of Spring 

quarter.  The timing of the game in relation to the curriculum was shortly after 

                                                           
10 The game goal orientation items are based on items developed for digital games by Quick and Atkinson 
(2014), which in turn, were based on items developed for learning goal orientations by Elliot et al. (2011). 
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students learned about the fundamental theorem of calculus in the integral calculus 

course.  The volunteers were also recruited from calculus courses that would ensure 

students had the necessary mathematical background to play the game.  These 

choices were made in order to follow the Timing Principle for the implementation of 

math learning games (Renne, 2019, Chapter 2).   

 

There were two research gameplay sessions, involving two groups each of 6 

participants playing in pairs.  Pairings in each session were randomly assigned.   

 

For purposes of the discussion, the participants were assigned pseudonyms.  

The six game pairs are labeled 1A, 1B, 1C, 2A, 2B, and 2C, respectively.  The 

numerical prefix indicates the session number, while the alpha suffix designates the 

game pair within that session.  Table 9 provides the pairings of the participants, 

with their gender indicated by (M/F), and sources of data available for each pair. 

 

Table 9: Game pair identifiers and corresponding sources of data. 

Identifier Pseudonyms Questionnaire Pre/Posttest Video Audio 

1A Alice (F) & Chad (M) ✓ ✓ ✓  

1B Bernard (M) & Helena (F) ✓ ✓ ✓  

1C Beau (M) & Eleanor (F) ✓ ✓ ✓  

2A Joseph (M) & Turner (M) ✓ ✓ ✓ ✓ 

2B Kayla (F) & Mei (F) ✓ ✓ ✓ ✓ 

2C Sabastian (M) & Zinnia (F) ✓ ✓ ✓  
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The participants were administered the background questionnaire for 15 

minutes, immediately followed by the pretest question for 15 minutes.  One player 

from each game pair was given the 2004 AP® exam question as a pretest, and the 

other player was given the 2012 AP® exam question.   

 

Following the pretest, the game was introduced to the players and the rules 

were explained.  The mathematics topic of the fundamental theorem of calculus and 

the key relationship that 𝐹′ = 𝑓 were pointed out, but not explained.  There was no 

need to give an exposition of the mathematics topic because of the adherence to the 

Timing Principle.  These steps were consistent with the recommendations of the 

Pre-brief Principle for the implementation of math learning games (Renne, 2019, 

Chapter 2).  

 

Players were provided with a reference sheet (Figure 8, Appendix G), along 

with a brief explanation of its use and usefulness.  While some of the language on the 

reference sheet is non-standard (e.g., “net area”), the language was commonly used 

in the classes at that university and the students would have been aware of its 

intended meaning.  The reference sheet was intended to assist players in deciding 

game moves to make, and to help players decide if the result of a game move 

correctly satisfied a given mathematical constraint posed on one of the playing 

cards (i.e., adjudication).  The creation and provision of the reference sheet are in 

keeping with the Planning Principle for the implementation of math learning games 
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(Renne, 2019, Chapter 2) and consistent with “[making] an effort to actively 

envision how students might mathematically approach the instructional tasks(s) 

that they will be asked to work on” (Stein, Engle, Smith, & Hughes, 2008, p. 322). 

 

 

Figure 8: The reference sheet given to participants playing Assembly Lines. 
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Each pair of participants played during a session that lasted approximately 

55 minutes.  All gameplay was video recorded.  The games played by Mei/Kayla and 

Joseph/Turner included audio.   

 

Players were given the choice of playing cooperatively or competitively, and 

all players chose to play cooperatively (which was somewhat unexpected).  To 

facilitate the learning of the game rules, the first game was played with the segment 

cards only.  Players were then given a choice whether to incorporate the key point 

cards in their second game.  Four of the six game pairs elected to incorporate the key 

point cards in their second game, and two did not.     

 

During the game, two facilitators circulated around the room to check in on 

players and monitor gameplay.  The two facilitators answered any questions 

relating to the game or the relevant mathematical ideas (without providing 

solutions to game tasks) and helped with judging the correctness of game moves 

(i.e., adjudication).  When answering math questions, the facilitators took great care 

in doing so by encouraging collaboration between game partners, asking questions 

of the players, and pushing players to explain what they were thinking.  That is, the 

facilitators were careful to support the learners in their authority and 

accountability.  To help players problematize, the facilitators would ask players to 

rephrase the mathematical task posed on the playing card under consideration.   
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The mathematical tasks represented by satisfying a segment or key point 

card constraint were considered quite difficult by the players.  Occasionally, the 

difficulty of the task resulted in “player paralysis,” where the players were unable to 

progress, and the gameplay stalled.  To assist players in moving forward, the 

facilitators would have the players explain their thinking about the goal they were 

trying to achieve before employing one of the following “hint” strategies (in order of 

precedence, with the first two being the most common). 

• Giving an indication of something the players said that was useful (or 

correct) for moving forward or a redirection through questions that 

were chosen (at that moment) to steer participants in the right 

direction. 

• Directing the players’ attention to the relevant portion of the 

reference sheet. 

• Giving an indication that a card could be satisfied. 

• Giving indication of a specific card that could be satisfied. 

 

 

The first hint type was given if the conversation indicated that one of the 

players had a substantive contribution.  The second hint type was given if the 

conversation revealed that both players were confused or lost.  The third hint type 

was given if players were still exhibiting play paralysis after the first two hint types.  

If the first three hint types did not alleviate the play paralysis, the fourth hint type 

was given.   
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The implementation choices made for how the facilitators would engage the 

participants during gameplay were consistent with the Managing Gameplay 

Principle (Renne, 2019, Chapter 2). 

 

After gameplay, 15-minute posttests were administered.  If the participant 

was given the 2004 AP® exam question as the pretest, then they were given the 

2012 AP® exam question as the posttest, and vice versa.   

 

During the research study gameplay of Assembly Lines, the facilitators 

followed the same implementation principles that Renne (2019, Chapter 2) suggests 

for teachers’ deployment of a mathematics learning game in a classroom setting, but 

with one very important difference: there was no moderated debrief session 

(Debrief Principle) following the gameplay.  In that sense, the research gameplay 

should not be viewed as an example of “best practice” in classroom implementation 

of a mathematics learning game, for a teacher moderated debrief discussion would 

be a critically important opportunity for the teacher to facilitate students’ learning 

from the game.  The choice made to administer a posttest immediately following 

gameplay was deliberate, for it afforded an opportunity to investigate performance 

gains that could be attributed to the gameplay itself.   

 

The students’ work on the AP® exam questions were graded independently 

by two people (one with several years of experience as a grader of AP® exams), each 
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using the same standards that were used for the original grading of the AP® exam 

questions (Appendix F).  Any differences in the scoring between the two graders 

were discussed and resolved to produce a single common grade score.  Performance 

gains/losses were recorded.   

 

Analysis of player engagement 

 

The analysis of player engagement sought to answer the research questions, 

stated again here: 

1. How can a game-based learning activity foster engagement with 

mathematical ideas? 

1.1. How can player contributions toward performing the 

mathematical tasks support engagement with mathematical 

ideas? 

1.2. To what extent will players stay “on task” relative to the 

mathematics? 

1.3. To what extent will players express “passionate involvement” 

during a math learning game? 

 

2. To the extent that learners are engaging with mathematical ideas, how 

can a game-based learning activity foster productivity, or “intellectual 

progress”? 

2.1. How does performance transfer to mathematical tasks outside 

of the game? 

2.2. How does student dependence on in-game mathematical 

resources change over time? 

2.3. To what extent do players become more efficient in performing 

mathematical tasks during gameplay? 
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The player engagement analysis was conducted using video and audio 

recordings to look for evidence of productive disciplinary engagement in 

mathematics.   

 

For the first research question, the following indicators adapted from Engle 

and Conant (2002), were considered evidence of engagement with mathematical 

ideas during gameplay. 

(a) By the end of the game, both players are attempting to make 

substantive contributions toward the performance of the 

mathematical tasks presented by the game.   

 

This was assessed by determining whether both players were 

physically engaging with the game at the same time and both players 

offering suggestions to achieve goals.  Evidence of physical 

engagement with the game included body position (e.g., facing the 

game board), hand gestures around or toward playing cards, the 

board, or the reference sheet, and physical interactions with the game 

pieces in a way that suggested an attempt to satisfy the mathematical 

constraints posed on the playing cards (as opposed to fidgeting or 

other irrelevant physical interactions).   

 

(b) Player contributions are coordinated with each other, rather than 

independent of each other.   

 

Independent play in this context was assessed by observing whether 

players were alternating turns (since all games were played 

cooperatively), one player was ignoring the other, and players were 

working toward different goals.   

 

(c) Players are attending to each other’s learning needs and contributions 

toward successful completion of the mathematics tasks or 

achievement of game goals.   
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This was assessed by body language and speech directed to their 

partner.  Body language indicating the affirmative included players 

facing one another, and speech indicating the affirmative was their 

responsiveness to the questions and contributions of one another.   

 

This was also assessed by observing whether one player was 

dominating the gameplay or discourse.  If one of the players was 

consistently too assertive or consistently too passive, that 

conversation was coded as having a dominant participant.   

 

(d) Players exhibit a high degree of engagement in gameplay.   

 

This was assessed by measuring the portion of time that participants 

were on task (game or mathematics).   

 

(e) Players express passionate involvement by making emotional displays 

or statements (e.g., “We’re on a roll!”, “Dang!”, or high-fives). 

 

Indicators (a), (b), and (c) were used to answer sub-question 1.1.  Indicator (d) was 

used to answer sub-question 1.2.  Indicator (e) was used to answer sub-question 

1.3.   

 

To answer the second research question, evidence of productivity or 

“intellectual progress” was assessed during or following gameplay through the 

following indicators adapted from Engle and Conant (2002): 

(f) Players exhibit performance gains from a pretest to a posttest.   

 

This was assessed using the AP® exam questions described above and 

included in Appendix F.  Gains were associated with intellectual 

progress. 

 

(g) Players show a reduction in the reliance on resources and are more 

independent as the game progresses.   
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This was assessed through analyzing the change in frequency with 

which the players relied on the reference materials and the facilitators 

from one game to the next.  Productivity was associated with a 

reduction in the frequency of using in-game resources.   

 

(h) Players play more efficiently as the game progresses, by having 

greater success in less time.   

 

This was assessed through analyzing changes in points earned per 

turn, time of play per turn, and points earned per minute.     

 

Gains in points earned per turn would suggest that the player is 

satisfying more mathematical constraints with each play, but this 

could be influenced by the combination of cards that come up through 

random events.  A simultaneous reduction in time of play per turn 

could support the inference that gains in points earned per turn can 

be partially attributed to mathematical progress.  However, by itself, a 

decrease in time of play per turn could be attributed to learning the 

game mechanics or could be achieved by simply building a graph as 

quickly as possible and ignoring the constraint cards.   

 

A gain in points per minute could be attributable to a gain in points 

per turn or a reduction in time of play per turn.  For example, it is 

possible to see a gain in points per minute if there is a serendipitous 

sequence of cards that present themselves while the players take 

slightly longer to play, which may not suggest mathematical progress 

as much as it suggests convenience.  Including this measurement in 

combination with the other two measurements could reveal efficiency 

of gameplay and could suggest an efficient use of time.  Points in the 

game indicate performance of challenging integral calculus tasks, and 

more points per minute could suggest that participants are either 

performing more (or harder) tasks in the same amount of time. 

 

Indicators (f), (g), and (h) were used to answer sub-questions 2.1, 2.2, and 2.3, 

respectively.   
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Results 

 

In the discussion of these results, all names are pseudonyms, and the two 

facilitators are labeled with “F1” and “F2”, respectively.  To give a sense for 

inflection, intonation, and emotion, italics are used to indicate emphasis in the 

speech, periods to indicate full stops in speech, and ellipses to indicate short pauses 

in speech.  Commas required in grammar are omitted if the player did not pause, 

and statements that terminate with rising inflection are completed with a question 

mark.  Long pauses are indicated with a “[p].”  Unclear recordings of the audio are 

indicated with a “[-?-].”   

 

When the player is referring to or otherwise indicating a line segment piece 

by its number label, a subscript 𝑝 is used, as in “4𝑝.”  The placement of a line 

segment with positive slope is indicated by a superscript arrow pointing upward 

and to the right, as in “4𝑝
↗.”  An arrow pointing downward and to the right in the 

superscript indicates that the piece was placed to have a negative slope, as in “4𝑝
↘.” 

 

Indications of a segment card being discussed, collected, or read are given by 

“C” with a subscript of 1, 2, or 3 to indicate the specific card.  Recall that each 

segment card corresponds to a mathematical constraint of the graph that is being 

built, and there are three face up at the beginning of each turn.  And “RS” will 

indicate the reference sheet.     
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Players struggled with distinguishing between 𝑓 and 𝐹, both in terms of the 

mathematics, and conversing about them.  Sometimes, they would just say "eff" 

without indicating which one they intended.  If the participant gave clear indication 

using modifiers, as in, “little eff” or “big eff,” then the quote uses the corresponding 

mathematical notation.  In all other cases, the letter will be spelled out, as in, “eff.” 

 

Were both players attempting to make substantive contributions? 

 

Engle & Conant (2002) argue that attempts by all participants to make 

substantive contributions can be evidence of productive disciplinary engagement.  

Note that in the context of this game study, many of the players were strangers to 

each other, so a risk averse or shy player may have been less inclined to contribute 

meaningfully at the beginning of the game.  By the end of the game, however, both 

players should be attempting to make substantive contributions.   

 

By the middle of the first game, both players were attempting to achieve the 

mathematical goals set forth by the game.  This was evidenced even in the videos 

without audio by players simultaneously pointing at and making use of the game 

materials.  Sometimes, both players would point at the board and make gestures 

that mimicked potential play of a line segment for their present or future turns.  

Other times, one player would place a line segment piece and begin gesturing and 

the other player might respond with gestures and/or changing the line segment.  
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During the fifth turn of their second game, Mei and Kayla were trying to 

figure out how to satisfy two constraints simultaneously to collect all three cards 

(the second constraint appeared on two cards).  The language on the cards read: 

1. If the right endpoint of this line segment is at 𝑥 = 𝑏, then 𝐹′(𝑏) ≥ 0.  

(This was 𝐶1.) 

 

2. If (𝑎, 𝑓(𝑎)) is the left endpoint of this line segment, and (𝑏, 𝑓(𝑏)) is 

the right endpoint, then 𝐹 attains a local minimum between 𝑎 and 𝑏.  

(This was both 𝐶2 and 𝐶3.) 

 

In the game, the segment cards refer to the location of the left and right endpoints of 

the line segment as 𝑥 = 𝑎 and 𝑥 = 𝑏, respectively.  Since all line segments are played 

over an interval of length 2 units, such that 𝑏 − 𝑎 = 2, references to 𝑎 + 1 are, in 

fact, references to the 𝑥-coordinate of the midpoint of the line segment to be played.  

Recall that players are building, from left to right, the graph of a continuous 

piecewise linear 𝑓, such that 𝑓 = 𝐹′.  The state of the graph at the beginning of that 

turn was equivalent to Figure 9. 

 

Figure 9: The state of Kayla & Mei's graph during their fifth turn. 
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The conversation captured in Table 10 is an example of both Kayla and Mei 

making attempts to contribute substantively toward the attainment of game goals 

and completion of mathematics tasks. 

 

Table 10: A conversation showing substantive contributions from both players. 

Name: Quote Notes 

Mei: 
 
So we won’t be able to do this unless we use 
(silently counting)… 6𝑝.  We’d have to use 6𝑝 

and we still wouldn’t get it this turn though. 

This is a reference to obtaining the local 
minimum on the graph of 𝐹, and they are 
discussing the possible play of 6𝑝

↘.   

Kayla: Hold on. This indicates her desire to have a voice. 

Mei: Well, we can use it to get closer to that 
(pointing to 𝐶3).  We just wouldn’t be able to 
do this one yet (pointing to 𝐶1). 

 

Kayla: Which one? She appeared to be consulting the RS. 

Mei: If we did 6𝑝 that brings us negative 

(pointing at the board).  So you’d have to do 
that and then do another one to get over the 
𝑥-axis and then we would get these two 
(pointing at 𝐶2 and 𝐶3).   

 

Kayla: But this one.  We wouldn’t accomplish this 
one (pointing to 𝐶1).   

 

Mei: But we would if we did one more.  

Kayla: But I don’t think we can add one just to like 
add one. 

This is a reference to playing a piece without 
satisfying a constraint. 

Mei: I don’t know if we can… I think you’re right.  

Kayla: What if we did like (placing 4𝑝
↘ to intercept 

the horizontal axis)? 

 

Mei: But I think this one has to go under.  Yeah.  
For these, you’d have to go under.  So… 

It appears that she is still thinking about the 
second constraint. 

Kayla: (Placing 3𝑝
↘) We have to plan for two turns 

ahead. 

Offering a compromise between their desire 
to optimize play and avoid breaking any 
rules. 

Mei: Yeah. That will work for this one. A reference to 𝐶1. 

 

The game allows for playing a line segment piece without satisfying a 

constraint, but Kayla and Mei were unaware of that fact.  In an apparent effort to 

balance their desire to maximize point totals with rule-following, they chose to 
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satisfy the first constraint and uncover the next card.  They both engaged with the 

game physically, contributed to the choice for that turn, and contributed to planning 

for future turns.   

 

Mei was attempting to position them to collect all three cards in their next 

turn, while Kayla was unsure of whether that would be allowed.  Kayla offered a 

counter proposal that involved satisfying one card this turn and preparing for the 

other two cards in the next turn.  Mei agreed and the play moved to the next turn.  

During the discussion, Mei repeatedly gestured toward the board or cards, while 

Kayla experimented with different game pieces. 

 

One game, involving Turner and Joseph, saw a slight disengagement near the 

end of the first game.  There was a widening gap in skill as the game progressed, and 

Joseph began to allow Turner to make all the decisions.  While Joseph did continue 

to ask relevant mathematical questions for the duration of gameplay, he did not 

appear to persist in trying to understand.  This seems to have been the only game 

pair that exhibited this phenomenon. 

 

Were player contributions coordinated? 

 

Another possible avenue for showing productive disciplinary engagement 

involves the coordination of contributions between participants (Engle & Conant, 
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2002).  One way to assess this is to examine its negation, independent play.  Since all 

players chose to play cooperatively, the design of the game would not have players 

alternating play.  Only one game pair (Alice/Chad) exhibited this behavior, but in the 

second game, they began to coordinate the placement of the pieces rather than take 

turns.  Despite their turn-taking, this pair did appear to discuss the choice before the 

piece was played.  While it is impossible to be certain since the video did not have 

audio, both players would gesture toward the cards, board, and reference sheet 

before each piece was played.   

 

Another indicator of independent play would be that one player ignores the 

contributions of the other.  This occurred in only one of the six games.  One player 

was attempting to make all the final decisions and generally ignored the input of his 

game partner.  When a player engages in this type of behavior, they are called an 

alpha gamer.  Despite continued efforts from both facilitators, this independent 

behavior only abated slightly.  Interventions from the facilitators included explicit 

instructions that he should ask his game partner questions before asking the 

facilitators and repeated affirmations of the contributions from his game partner.   

 

Around the sixth or seventh turn of the first game, the alpha gamer’s partner, 

Zinnia, began to display overt and sustained contributions to the discussion.  

Despite not having audio, it was possible to estimate the moment when she began 

making sustained contributions to the discussion by analyzing the audio of a nearby 
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game.  That audio did not provide enough clarity to ascertain details of their 

discussion, but it was clear who was speaking.  Roughly the first 35 minutes of their 

game was dominated by Sabastian telling Zinnia what he thought, and then engaging 

with a facilitator for feedback, despite Zinnia’s continued attempts to contribute.  

The video footage of their game is consistent with this estimate in that she began to 

demonstrate more physical engagement with the board game, game pieces, and 

cards during the sixth turn.  The video also shows that the alpha gamer placed all 

but two pieces (one in each game), while all game pieces were within reach of both 

players.  Additionally, one of the facilitators noted that the alpha gaming persisted 

until the end.  Alpha gaming has several implications for implementation of game-

based learning activities, which will be discussed below.   

 

The last indication of independent play that occurred during this game study 

was that of the two players working toward different goals (this does not include a 

“divide-and-conquer” approach, which would be a coordination of contributions).  

The only games that showed players working toward different goals in an 

exclusionary way were those two games played by Sabastian (alpha gamer) and 

Zinnia.  Zinnia generally went along with trying to satisfy whichever constraints 

Sabastian chose, but in two instances, they were working toward different goals (the 

two pieces that she placed).   
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The video does not reveal any insight into the two instances in which 

Sabastian and Zinnia did not coordinate, but one of the facilitators noted that the 

second instance (the third turn of the second game) may have been her attempt to 

remove all doubt that she was correct about her advice from the previous turn (the 

second turn).  Zinnia recognized that they had satisfied a global constraint that 

involved finding an integer endpoint to an interval so that ∫ 𝑓(𝑥)
𝑏

−10
𝑑𝑥 ≤ −18.  

Indeed, after their second turn, the graph of 𝑓 was such that ∫ 𝑓(𝑥)
−6

−10
𝑑𝑥 = −18.  

She then tried to collect the card, while Sabastian doubted her correctness.11  During 

his deliberation of the matter, she simply played the next line segment piece entirely 

below the horizontal axis and declared 𝑏 to be the right endpoint of her piece (at 

−4).  Thus, the inequality was satisfied beyond doubt.   

 

Nearly all other gameplay had players coordinating their contributions.  This 

was exemplified by players continually asking each other which card or cards to do 

next, checking in with the other player to see what they thought about a matter, or 

asking permission before proceeding.   

 

 

 

                                                           
11 Cynicism can be useful in eliciting strong mathematical justifications.  However, rather than cynicism, 
the alpha gamer’s repeated failure to admit the contributions and reasoning of his game partner was 
more like repudiation. 
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Were players attending to each other? 

 

Engle & Conant (2002) suggest an assessment of body language and speech 

directed to group participants to determine whether participants are attending to 

one another.  In the context of a multiplayer tabletop mathematics learning game 

being played cooperatively, attending to one another might include learning needs, 

contributions toward successful completion of mathematics tasks, and contributions 

toward achievement of game goals.   

 

During the game, players were seated beside each other and facing the game 

board.  This seating arrangement naturally enforced a minimum amount of body 

language being directed toward each other.  Indeed, it was only brief moments that 

players would turn away from each other. 

 

In five of the six games, there was not one player that dominated the 

gameplay or the discourse.  Except for the alpha gamer mentioned previously, 

speech was generally directed toward one another, and players were invested in 

what their partner had to say (both in terms of learning and in terms of gameplay).  

Facilitators usually positioned themselves so that the players would still be facing 

each other by standing between and behind the players, or in front of the players.  

Such positioning encouraged players to maintain inclusiveness while receiving help 

from the facilitators.   
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The video for Turner and Joseph showed that the pair were attending to each 

other for the first 9 turns of the first game.  A typical example occurred during 

Turner and Joseph’s first game, before Joseph slightly disengaged.  Joseph and 

Turner were working to understand the graphical features of 𝑓 that would indicate 

the presence of local extrema on the graph of 𝐹.  In this case, Joseph was particularly 

perplexed by the fact that the graph of 𝑓 = 𝐹′ would be decreasing as it crossed the 

horizontal axis, for there to be a local maximum on the graph of 𝐹.  The conversation 

shown in Table 11 took place immediately following a lengthy conversation with 

one of the facilitators.   

 

Table 11: An example conversation showing players attending toward one another. 

Name: Quote 

F1: See if you can satisfy this card (pointing to 𝐶1)  and another one, because you can.  
You can satisfy two cards. 

Turner: (pointing at 𝐶1 and 𝐶2) These two.  But not this one (pointing at 𝐶3).  I think. (F1 
leaves) 
[p]  Do… do you see why that is? 

Joseph: No. 

Turner: Ok.  Um.  Well… (grabbing the RS) appealing to the authority of this white sheet of 
paper… um, because I didn’t know this before, uh, apparently, um. The, the anti-
derivative does indeed have a local maximum if, um, 𝑓 is equal to 0 – so this 
function is equal to 0 (pointing to graph) at wherever.  Uh… and is positive on the 
left side of 𝑐 (pointing at the board near the horizontal axis) and negative on the 
right side of 𝑐 (pointing at the board) 

Joseph: Right.  So.  This has always confused me. (and the conversation continued, with 
Turner explaining mathematical concepts to Joseph) 

 

After a detailed conversation involving both players and the facilitator, 

Turner appeared to have a profound breakthrough in his mathematical 

understanding of the graphical relationship between 𝑓 = 𝐹′ and 𝐹 (evidenced by 
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subsequent efficiencies in his play).  Immediately following the facilitator’s 

departure, Turner gave a long pause.  It is not clear whether he was deliberating or 

giving Joseph an opportunity to deliberate.  However, it is clear from what Turner 

asked Joseph, that he wanted to give Joseph the opportunity to understand the 

relevant mathematics before moving on.  Turner was attending to the Joseph’s 

learning needs, and Joseph was attending to Turner’s contributions toward his 

achievement of learning outcomes.   

 

During the last turn of the first game, Joseph slightly disengaged.  Turner was 

careful to incorporate Joseph after mathematical breakthroughs but became slightly 

impatient near the end.  It is unclear which occurred first, the disengagement or the 

impatience.  However, it became clear that they were not attending to each other as 

thoughtfully as before that turn.  Joseph continued to ask questions, and Turner 

continued to provide answers and justifications for his game moves, but Joseph 

would reply with comments like, “I guess… ok.  I’m happy to say we got it.”   

 

What portion of the time was on task? 

 

Engle & Conant (2002) approach the question of staying on task through its 

negation.  Namely, by assessing whether participants avoid off-task activities.  In the 

context of the gameplay, an example of an off-task activity might be the player’s 

engaging in discourse unrelated to the game or the mathematics (socializing).  
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However, as players of a game become comfortable with the setting, unrelated 

discourse may arise as a natural filler for the time between games or during brief 

reorganization of the game materials (between-play downtime).  Social discourse 

that occurred during the between-play downtime was not measured in this study, 

but it did occur.  Socializing during the game was extremely rare.  The videos with 

audio showed only one moment that lasted approximately 20 seconds, and one 

facilitator noted that players were generally on task throughout the gameplay.   

 

Another example might be for players to look at their mobile phone during 

play.  The videos did not show the players’ eyes, so it is not possible to know where 

players were looking with certainty.  However, the videos showed that player body 

positions were generally angled slightly toward each other while facing the game 

board.  In addition, there were only three brief instances caught on camera in which 

the participants looked at their mobile phone, each lasting no more than 5 seconds.  

In one recorded instance, a participant appeared to ignore, or did not notice, the 

incoming notification on her phone.  All other mobile phone interactions caught on 

camera were during between-play downtime.   

 

As discussed above, Joseph exhibited a slight disengagement from the game 

while playing with Turner.  However, they both stayed on task for the duration of 

gameplay.  This was evidenced by Joseph’s continued mathematical questions as 

Turner made plays.   



199 

 

 

 

Alice and Chad finished their second game approximately 7 minutes earlier 

than everyone else and decided not to play again.  However, they chose to spend 

some of that extra time reflecting on the game and their choices.  In this way, they 

were partially on task. 

 

The video angles were chosen so that the game board, the cards, and the play 

choices could be determined from the video footage.  As such, the cameras were 

unable to have a wide enough angle to see the entire player and their eye gaze.  

However, the discussion above regarding the general lack of evidence for off-task 

activities suggests a high degree of engagement in gameplay.  The portion of the 

time that was on task handily exceeded 95%, if between-play downtime is excluded 

from consideration.  For all game pairs, the between-play downtime was less than 5 

minutes.   

 

Were there emotional displays or statements? 

 

Engle & Conant (2002) suggest that emotional displays and statements show 

passionate involvement and can be evidence of productive disciplinary engagement.  

In this game study,  both videos that contained audio showed moments of emotion, 

and one of the videos without audio also showed some moments of emotion.  In the 

latter case, Chad would occasionally rub his hands together at the end of a turn, as if 
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eagerly awaiting the next card(s), and for much of their second game, Chad’s partner 

Alice would roll her chair rapidly back and forth, away and then toward the desk, as 

one might do in nervous excitement.  Some emotional highs and lows were found in 

the audio, where Turner once excitedly exclaimed, “Wow!” and another time, 

“Cool!”, while Kayla once reacted with, “doooope,12” and in a moment of frustration, 

Mei slapped the desk.  Excerpts are collected from Kayla and Mei’s games in Table 

12. 

 

Table 12: Examples of passionate involvement indicated by emotional statements. 

Name: Quote Notes 

Kayla: Doooope! We got momentum. Let’s work on 
that. (both laugh) 

This occurred immediately following 
successfully interpreting and applying the 
RS to create an inflection point and then 
explain it to F1. 

   

 After flipping a new card:  

Mei: Can we do this one though?  

Kayla: Yeah. Oh my god (both laugh).  It keeps 
getting worse.  It’s like it brings up your 
confidence and knocks [-?-] down (while 
chuckling).   

This was a response to turning over a new 
card that they perceived as difficult to 
achieve given their remaining line 
segment pieces. 

   

 When experimenting with a line segment 
piece: 

 

Kayla: So that would be a little bit more than 2, 
huh? 

A reference to the area under the curve. 

Mei: I think it’s a little bit, well, if there was a line 
here this would be one box, that’s 1.  And 
this is a little less.  Oh wait.  Is it?  A little 
more I guess. 

 

Kayla: Yeah.  It’s a little bit more than 2.  Dang! This exclamation was quite loud.   

 Then, after much discussion and satisfying a 
different, but challenging constraint: 

 

Mei: We did it! (laughs)  

Kayla: Yes! Yes! (louder) (Mei laughs again)  

                                                           
12 A slang term with highly positive connotations when said in this way.   
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Table 12: Continued 

F2: Plus, if you guys would’ve put the 0𝑝, it 

would’ve been 1 + 1. 

This clarified their doubts regarding “a 
little more” in the previous excerpt. 

Kayla: Oh! So we could’ve done that.  

Mei: For this? (pointing to the card)  We were 
right. 

 

Kayla: Yeah.  Oh my gosh!  Ok, that’s just like a 
bonus point then.  A personal bonus point. 

 

Mei: Yeah.  

Kayla: I need it.  

F2: A bonus point for your self-esteems.  

Kayla: Yeah.  I needed this. (Mei laughs).  Can we 
start over now? 

This is a request to play again. 

Mei: (Counting cards earned) We got like 12 
points.   

 

Kayla: Alright.  I’m starting to get the hang of this 
now.  I feel a little bit better now.   

 

 

 

How did performance change from pretest to posttest? 

 

The pretest and posttest questions were the relevant AP® exam questions 

from the years 2004 and 2012 (Appendix F).  One player from each game pair was 

given the 2004 exam question as the pretest question and the 2012 exam question 

as the posttest question.  The other player in each game pair was administered the 

same two questions, but with the pretest/posttest order reversed.  Players were 

given 15 minutes to complete each of the pretest and posttest questions.  The 

students’ work on these AP® exam questions were graded independently by two 

people (one with several years of experience as a grader of AP® examinations), each 

using the same standards that were used for the original grading of the AP® exam 
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questions (Appendix F).  Any differences in the application of the standards between 

the graders were resolved to produce consistent grading.   

 

The mean score on the pretests was 1.25 and the mean score on the posttests 

was 1.67.  Overall, the players appeared to show modest learning gains on the 

immediate posttest (Table 13). 

 

Table 13: Change in scores from pretest to posttest. 

 Mean Score 
Pretest 1.25 
Posttest 1.67 
Increase/(Decrease) 0.42 

 

Zinnia, the partner of the alpha gamer, Sabastian, did not seem obviously 

affected during gameplay but showed the largest decrease in performance when 

compared to all other players.  The 2004 pretest score for Zinnia was a 4 out of 9, 

and her 2012 posttest score was a 0 out of 9.  She was the top performer of all 

pretests and dropped to the lowest possible score on the posttest. 

 

Removing the test scores of the apparently affected player reveals more 

impactful results.  The mean scores change from 1.00 in the pretests to 1.82 in the 

posttests (Table 14).  While modest in absolute terms, the change reflects a near 

doubling in scores in relative terms.   
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Table 14: Change in scores from pretest to posttest excluding Zinnia. 

Trimmed Mean Score 
Pretest 1.00 
Posttest 1.82 
Increase/(Decrease) 0.82 

 

An analysis of pre-posttest performance measures grouped by enrollment 

may suggest that participants that were currently enrolled in the single-variable 

integral calculus course exhibited greater gains (Table 15).  While the sample size is 

small, these data plausibly suggest that curricular timing may be related to student 

motivation to transfer the mathematics outside the game.   

 

Table 15: Change in scores from pretest to posttest, split by course enrollment. 

 Currently Enrolled 
Mean Score 

N = 9 

Not Currently Enrolled 
Mean Score 

N = 3 
Pretest 1.11 1.67 
Posttest 2.00 0.67 
Increase/(Decrease) 0.89 (1.00) 

 

 

The AP® exam questions included a piecewise function whose pieces were 

either linear or semi-circular.  The game only included tasks involving line 

segments, which means that the sub-tasks of the AP® exam questions that involve 

the semi-circular piece of the given graph would be transfer tasks.  Only one 

participant (Chad) earned a point on the transfer task, suggesting that no 

appreciable gains were made on the transfer tasks.   
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Did players become more independent of the in-game resources? 

 

A possible indicator of mathematical progress might be a decrease in reliance 

on resources and facilitation as the participant becomes more independent.  The 

game Assembly Lines was designed so that all game moves correspond to a 

meaningful mathematical move, and if the player is attempting to earn a card by 

satisfying its mathematical constraint, then that game move is purposeful as it 

relates to the mathematics.  In addition, the reference sheet is a mathematical 

reference.  A reduction in the use of the reference sheet and receiving help from the 

facilitators, while simultaneously continuing to perform tasks successfully, could 

suggest increasing understanding of the corresponding mathematics.  Such a 

reduction could be explained by learning how to play the game, but learning how to 

play Assembly Lines successfully, will, at least in part, correspond to learning some 

mathematics.   

 

All six game pairs began a second game.  Only the game pairs Beau/Eleanor 

and Joseph/Turner did not use the key point cards in their second game.  The game 

pairs Beau/Turner, Joseph/Turner, and Sabastian/Zinnia only completed 4 turns 

(40%) of their second game, and game pair Kayla/Mei only completed 9 turns 

(90%) of their second game.  To account for this difference between game pairs, all 

the measurements are divided by the number of turns to provide a uniform basis for 

comparison.   
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Kayla and Mei correctly determined that playing their 10th and final piece 

was superfluous and would not give them any more points.  They chose to focus on 

the key point card at that time, to see if they could figure it out without continuing to 

build their graph.  They were able to determine how their graph had satisfied it just 

before time ran out for the session, so they were unable to work on another key 

point card which could have motivated playing a 10th piece. 

 

Of the six games whose data are presented below, only game pairs 

Joseph/Turner and Kayla/Mei had audio.  Since the videos did not show eye gaze, 

body language was used.  The videos that contained audio suggest that almost all 

uses of the reference sheet were accompanied by physical evidence that could be 

seen in the videos (like pointing, bring it closer, holding it up, etc.).  Similarly, almost 

all instances of facilitation were accompanied by physical evidence which showed 

the facilitator in action.     

 

Players would commonly use the reference sheet, then interact with the 

board or each other, and sometimes repeat this process in a single turn.  If both 

players interacted with their own reference sheet at the same time, that was 

counted as two lookups.  If both players appeared to be sharing a reference sheet, it 

was counted as one lookup because most videos did not have audio and it was not 

always possible to be certain that both players were making use of it.  If a player 
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began interacting with the game pieces, game board, game cards, or their game 

partner after using the reference sheet, and then shifted their attention back to the 

reference sheet, then the second lookup would be counted.  If the player appeared to 

be glancing back and forth to compare the reference sheet to the game pieces, game 

board, or game cards, then those were not counted as separate instances of using 

the reference sheet.  If a player engaged with a facilitator and were instructed to 

consult the reference sheet (indicated by the facilitator pointing at the reference 

sheet), then that would be counted as a lookup and help.  Table 16 shows the 

changes in reference sheet lookups from game one to game two. 

 

Table 16: Changes in reference sheet lookups from game one to game two. 

Game Pair 

Game 1 RS 
Lookups per 

turn 

Game 2 RS 
Lookups per 

turn 

Change in RS 
Lookups per 

turn 

Percent Change 
in RS Lookups 

per turn 

Alice/Chad 1.7 0.1 – 1.6 – 94% 

Bernard/Helena 0.8 0.0 – 0.8 – 100% 

Beau/Eleanor* 1.8 0.5 – 1.3 – 72% 

Joseph/Turner* 3.1 0.2 – 2.9 – 92% 

Kayla/Mei 3.8 0.4 – 3.4 – 88% 

Sabastian/Zinnia 2.1 1.0 – 1.1 – 52% 

Mean 2.2 0.4 – 1.8 – 83% 

*These game pairs did not play with key point cards (global constraint cards) in their second game. 
 

 

Any engagement with the facilitator was counted as receiving help, since 

nearly all interactions with the facilitators were questions regarding rules or 

mathematics.  The duration of an instance of facilitation is not represented in the 

data below.  Table 17 shows the changes in the amount of help received from 

facilitators from game one to game two. 
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Table 17: Changes in receiving help from facilitators from game one to game two. 

Game Pair 
Game 1 F1/F2 
Help per turn 

Game 2 F1/F2 
Help per turn 

Change in 
F1/F2 Help per 

turn 

Percent Change 
in F1/F2 Help per 

turn 

Alice/Chad 0.5 0.3 – 0.2 – 40% 

Bernard/Helena 0.6 0.2 – 0.4 – 67% 

Beau/Eleanor* 0.9 0.3 – 0.6 – 72% 

Joseph/Turner* 0.7 0.5 – 0.2 – 29% 

Kayla/Mei 1.0 0.7 – 0.3 – 33% 

Sabastian/Zinnia 1.6 1.0 – 0.6 – 38% 

Mean 0.9 0.5 – 0.4 – 46% 

*These game pairs did not play with key point cards (global constraint cards) in their second game. 

 

The data show that game pairs averaged 2.2 reference sheet lookups per turn 

in their first game, and they averaged 0.4 reference sheets lookups per turn in their 

second game.  That is, the game pairs changed from roughly two lookups per turn in 

the first game, to one lookup every two turns in their second game.  That is an 83% 

reduction in the frequency from one game to the next.  The primary use of the 

reference sheets was to interpret and understand the mathematical concepts put 

forth by the constraint cards and connect that to the graph they were building.  This 

result suggests that players were learning the mathematical connections between 

the cards and the graph.   

 

Similarly, all game pairs showed a reduction in the frequency with which 

they needed assistance from one of the facilitators, dropping from an average of 0.9 

instances of help per turn in the first game, to 0.5 instances of help per turn in the 

second game.  That is, the game pairs averaged nearly one instance of help per turn 

in the first game, and only one instance of help every two turns in their second 
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game.  That is nearly a halving (46%) in the frequency in the instances of facilitation 

from one game to the next.   

 

The game pair Sabastian/Zinnia stands out in some remarkable ways.  Their 

first game showed them engaging with a facilitator nearly as frequently as they 

engaged with the reference sheet.  Their second game showed equality in the 

frequencies.  They showed the smallest reduction in use of the reference sheet per 

turn.  This was the pair with the alpha gamer.  One of the facilitators noted that this 

game pair absorbed more of their time during the session than any other group, 

which is not reflected in the counts.  Much of that time was spent attempting to steer 

the alpha gamer (Sabastian) toward coordination with their game partner (Zinnia).   

 

A comparison of the two sessions shows that the first session exhibited more 

impressive improvements in these frequencies than did the second session.  This 

may suggest that certain interaction dynamics that require considerable attention 

from a facilitator could reduce the access other students have to support.  A 

reduction in support or access to resources could hinder productive disciplinary 

engagement (Engle & Conant, 2002).  This result may have implications for a 

teacher that uses game-based learning activities in the classroom.   
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Did players become more efficient with their gameplay? 

 

In the case of Assembly Lines, an increase in the efficiency of gameplay may be 

partially attributable to progress toward the mathematics learning goals.  Assembly 

Lines was designed so that the game moves had mathematical meaning, and that 

players attempting to earn points through the collection of constraint cards would 

be acting purposefully.  That is, if a player made a move with the intention of 

satisfying a constraint card, they were doing so with mathematical ideas in mind.  

Improvements in gameplay efficiency could mean a better understanding of the 

game, of the mathematics, or both.  Three measurements were used in order to gain 

insights into possible reasons for changes in gameplay efficiency: changes in points 

earned per turn (Δppt), changes in time of play per turn (Δmpt), and changes in points 

earned per minute (Δppm).  As discussed above, all three measurements are needed 

to adequately support attributing improvements in gameplay efficiency to 

mathematics learning.    

 

All players chose to play cooperatively, and 4 of the 6 game pairs elected to 

incorporate the key point cards in their second game.  It might be expected that 

game pairs which chose to incorporate key point cards would score more points 

than game pairs that did not.  However, the difficulty of the key point cards meant 

that game pairs might take longer to play the second game, ask for more help, or 

both.  The results discussed in the previous section suggest that they did not ask for 
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more help.  Game pairs that played with the key point cards in their second game 

appeared to seek facilitation with comparable frequency to those game pairs that 

did not use the key point cards, and they showed similar reductions in that 

frequency from game 1 to game 2.  

 

Data showing measures of efficiency in games one and two are in are Table 

18, and the data showing changes in the measures of efficiency from game one to 

game two are in Table 19. 

 

Table 18: Game 1 and Game 2 measures of efficiency. 

 Game 1 Game 2 

Game Pair 
Points per 
turn (ppt) 

Min. per 
turn (mpt) 

Points per 
Min.(ppm) 

Points per 
turn (ppt) 

Min. per 
turn (mpt) 

Points per 
Min.(ppm) 

Alice/Chad 1.10 2.66 0.41 2.90 2.02 1.44 

Bernard/Helena 1.20 2.28 0.53 1.20 3.03 0.40 

Beau/Eleanor* 1.30 4.86 0.27 1.50 1.88 0.80 

Joseph/Turner* 1.60 5.73 0.28 1.25 1.17 1.07 

Kayla/Mei 1.20 4.48 0.27 1.56 1.69 0.92 

Sabastian/Zinnia 1.00 4.25 0.24 1.25 4.76 0.26 

Mean 1.23 4.04 0.33 1.61 2.42 0.81 

*These game pairs did not play with key point cards (global constraint cards) in their second game. 

Table 19: Changes in measures of efficiency from game one to game two. 

 Change Percent Change 

Game Pair 𝚫ppt 𝚫mpt 𝚫ppm 𝚫ppt 𝚫mpt 𝚫ppm 

Alice/Chad 1.80 – 0.64 1.02 164% – 24% 247% 

Bernard/Helena 0.00 0.75 – 0.13 0% 33% – 25% 

Beau/Eleanor* 0.20 – 2.99 0.53 15% – 61% 199% 

Joseph/Turner* – 0.35 – 4.56 0.79 – 22% – 80% 282% 

Kayla/Mei 0.36 – 2.79 0.65 30% – 62% 243% 

Sabastian/Zinnia 0.25 0.51 0.03 25% 12% 12% 

Mean 0.38 – 1.62 0.48 35% – 30% 160% 

*These game pairs did not play with key point cards (global constraint cards) in their second game. 
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The data suggest that incorporation of the key point cards may have slightly 

disadvantaged gameplay efficiency gains.  However, Bernard and Helena noted to 

the facilitators that they drew an unfavorable key point card that had a considerable 

impact on the progression of the game.  And, as noted before, Sabastian and Zinnia 

was the game pair with the alpha gamer, which could partially explain their 

underwhelming gain in efficiency.  Kayla and Mei did not attend to the key point 

cards until their last turn, which may have contributed to their considerable gains in 

time per turn (it was consistent with the two pairs that did not incorporate key 

point cards).  In general, it appears that incorporation of the key point cards did 

appear to yield more points and consume more time, with a slightly greater effect in 

the consumption of time.  The results from an earlier section suggest that the 

difficulty in obtaining key point cards did not lead to greater use of in-game 

resources.  This suggests that players were handling greater challenges with less 

help.   

 

Overall, the data seem to suggest considerable gains in gameplay efficiency 

that may be partially attributable to the learning of mathematics.  The overall 

changes indicate a 35% gain in points per turn (ppt) and a 160% gain in points per 

minute (ppm), with a simultaneous 30% reduction in time per turn (mpt).  The 

overall gain in ppt suggests players were satisfying more constraints per turn, or 

more challenging constraints per turn (e.g., the key point cards).  The overall 
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reduction in mpt suggests players were playing faster, which could be attributed to 

increased understanding of the game rules or the mathematics.  Given the 

reductions in the frequency in using resources, the reduction in mpt seems to be 

related to both.  The overall gain in ppm suggests players were satisfying more 

constraints per minute, or more challenging constraints per minute.   

 

Discussion of interactions between players during gameplay 

 

The previous section discussed the evidence for productive disciplinary 

engagement in mathematics indicated across both research gameplay sessions.  In 

this section, the discussion turns to lessons that can eb learned from the progression 

of interactions between players in each game pair.  

 

Game pair 1A (Alice & Chad): Alice and Chad played considerably faster than 

everyone else and earned 5 key point cards.  Despite being slightly more than 

double the next highest score, their overall gain in efficiency was comparable to the 

gains in efficiency of the two game pairs that did not incorporate the key point 

cards.  This was likely due to their efforts in completing more challenging 

mathematical tasks.  In addition, each player improved 2 points out of 9 from the 

pretest to the posttest. 
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The video for Alice and Chad did not have audio, but their body language 

generally supported the idea that they were working together, on task, and engaged 

with the mathematics throughout the game.  Alice’s mobile phone visibly alerted her 

to notifications during play, and she appeared to ignore it.  In addition, each player 

exhibited attenuated excitement during the second game, as exhibited by Alice 

rolling her chair back and forth and Chad rubbing his hands together while new 

cards were being drawn.   

 

Taken together, the evidence seems to suggest that Alice and Chad were 

productively engaged in the discipline of mathematics while playing Assembly Lines.   

 

Game pair 1B (Bernard & Helena): Bernard and Helena showed a decrease in 

gameplay efficiency, but they complained of having an unfavorable draw of cards in 

their second game.  The unfavorable draw of an extremely difficult key point card 

appears to have consumed a considerable amount of their time.  They did not 

appear to use their reference sheet during their second game, and they only asked 

for facilitation twice.  This suggests that it may be the bad draw that bogged them 

down, rather than their continuing to struggle with mathematical concepts.  Indeed, 

Bernard improved by 1 point from the pretest to the posttest, while Helena 

improved 2 points.   
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The video for Bernard and Helena did not have audio, but their body 

language generally supported the idea that they were working together, on task, and 

engaged with the mathematics throughout the game.  There were no noticeable 

emotional displays from this game pair.   

 

Taken together, the evidence seems to suggest that Bernard and Helena were 

productively engaged in mathematics.   

 

Game pair 1C (Beau & Eleanor): Beau and Eleanor only completed 4 turns (of 

10) in their second game, and they did not incorporate key point cards.  They 

showed a reduction in the frequency with which they utilized in-game resources, 

but it is unclear whether their gains in efficiency could be attributed to attainment 

of mathematics learning goals.  They showed a 15% gain in points per turn, which 

could have been due to favorable draws.  They also showed a considerable 

reduction in time per turn (61%), but this could easily be attributed to having 

learned the rules of the game.  Additionally, their having only played 4 turns of the 

second game makes it uncertain whether the gains in efficiency would have been 

sustained.  Optimistically, the reduction in their use of resources seems to suggest 

slight improvements in mathematical understanding, but that conclusion is not 

corroborated by the other evidence.   
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The video for Beau and Eleanor did not have audio, but their body language 

generally supported the idea that they were working together, on task, and engaged 

with the mathematics throughout the game.  There were no noticeable emotional 

displays from this game pair, but they did incorporate social norms that exist in 

other card games.  This game pair cut the deck after shuffling and before dealing the 

segment cards for their second game.  They also used a hand-sign that is sometimes 

used at a Blackjack table to indicate that they want to “stand.”  In this case, they used 

the hand-sign to indicate that they were ready to adjudicate the play.   

 

Beau improved 2 points from the pretest to the posttest, while Eleanor 

showed a decrease of 1 point.  The results for this pair of players were not entirely 

clear, but it does appear that both were engaged in mathematics.  The evidence 

suggests that only Beau showed “intellectual progress” (Engle & Conant, 2002), and 

Eleanor may not have done so.  Without the audio, there is scant evidence to counter 

the suggestive nature of the test performances for Eleanor.     

 

Game pair 2A (Joseph & Turner): Joseph and Turner only completed 4 turns of 

their second game and did not incorporate key point cards during their second 

game.  It is difficult to determine the degree to which this game pair was exhibiting 

productive disciplinary engagement in mathematics.  The improvements from game 

1 to game 2 are attributable to the attainment of mathematics learning and game 

goals by one of the two players (Turner).  The less skilled player (Joseph) 
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disengaged near the end of their first game, and then began to play more passively.  

Joseph only reengaged sporadically during the second game.  The last turn of the 

first game, and all four turns of the second game were decided solely by Turner.   

 

The video for Joseph and Turner did have audio.  It showed that the pair was 

engaged in mathematics as a discipline for the first 9 turns of the first game, and that 

Joseph partially disengaged at that time.  Turner was careful to include Joseph in the 

action after mathematical breakthroughs but became slightly impatient near the 

end.  They began to ask about the time and sighed a few times (apparently out of 

frustration).  However, Turner stayed after the session to ask when he might see the 

game commercially available.  This seems to suggest that Turner valued the game, 

but not playing with Joseph.   

 

Neither player changed from pretest to posttest, but the other evidence 

available seems to suggest that Turner exhibited productive disciplinary 

engagement, while Joseph showed a lack of productivity.   

 

Game pair 2B (Kayla & Mei): Kayla and Mei only completed 9 turns of their 

second game, but made that decision based on an attempt to optimize gameplay.  

During their 10th and final turn, they recognized that there was no available play 

that would satisfy the available constraints on the segment cards.  At that time, they 

decided to incorporate and attend to the key point cards.  The card they drew had 
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been satisfied by an earlier play and they identified that fact right before the 

gameplay session concluded.  Thus, they were not in a situation that would motivate 

play of the 10th piece.  Most of their efficiency gains were in the form of time savings, 

which may reflect that ending sequence of events.   

 

The video for Kayla and Mei, which included audio, showed that they needed 

help with adjudicating every turn of the first game and most turns from their second 

game.  It was not until near the end of their second game when their independence 

from the in-game resources began to emerge.  As they progressed toward that 

independence, the nature of their mathematical discourse began to show increasing 

understanding of the mathematics.  They did not seem to improve their use of 

formal mathematical language, but they did appear to make deeper connections.   

 

For example, one late card that they drew contained the notation, 𝐹′(𝑏), 

which they immediately identified as 𝑓.  When reading the new card, Mei said, 

“(quietly) eff prime of b, (loudly) which is just eff!”  One of the significant hurdles for 

the players of Assembly Lines was non-rhetorical recognition that 𝐹′ = 𝑓, which is 

consistent with other research (Orhun, 2012).  Most players would repeat that fact 

throughout the gameplay, but early on, it typically would occur only after a 

reminder from the facilitators to revisit that part of the reference sheet.  In this case, 

there was no facilitator, there was no reference sheet lookup, and almost no time 

transpired between the two parts of that statement.  This suggests that they 
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recognized the most essential mathematical connection between objects in the game 

in a way that was non-rhetorical.   

 

Kayla and Mei proved to be exemplars in terms of attempting to make 

substantive contributions, coordinating contributions, attending to one another, 

staying on task, and engaging emotionally.  However, neither pair seemed to 

improve from the pretest to the posttest.  Mei dropped in performance 1 point, and 

Kayla performed the same in both tests.   

 

Overall, the evidence for this pair seems to suggest that they productively 

engaged in mathematics, despite lackluster test performances.  Kayla had expressed 

fatigue during the gameplay by pointing out that she had “been at school since like 

5AM,” which was more than 14 hours before the posttest.  It is possible that fatigue 

played a part in the lack of improvement in posttest performance.   

 

Game pair 2C (Sabastian & Zinnia), the case of the alpha gamer: Sabastian 

improved 2 points from pretest to posttest, while Zinnia dropped 4 points (changing 

from being the top performer on the pretest to a score of zero on the posttest).  The 

pair showed a modest reduction in the utilization of in-game resources when 

counting instances, but the duration of time for each instance of facilitation may 

have cost the other game pairs access to valuable in-game resources.  Overall, each 

player of the pair may have been engaged in the mathematics in an uncoordinated 
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way, but that is not reflective of disciplinary engagement as envisioned by Engle and 

Conant (2002).  Thus, it seems that Sabastian and Zinnia did not exhibit productive 

disciplinary engagement in mathematics.   

 

In summary, it appears that 5 of the 6 participants from the first gameplay 

session engaged productively with mathematics concepts and tasks, while 4 of the 6 

participants from the second gameplay session showed mathematical engagement 

that was slightly productive.     

 

The presence of the alpha gamer during the second gameplay session may 

have contributed to the results being less convincing for participants of that session.  

Not only did the alpha gamer negatively impact the learning of his game partner, but 

he consumed facilitator time that may have been beneficial to other players.  The 

evidence suggests that all players engaged with the mathematical concepts and 

tasks, and a majority of players were productive. 

 

Conclusions and implications for implementation of a game-based learning 
activity 

 
 

This study investigated how a game-based learning activity could foster 

engagement with mathematical ideas and how that game activity could make that 

engagement productive.  During gameplay it was found that participants engaged 

with mathematical ideas in numerous ways.  The players collaborated in attempting 
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to make substantive contributions toward completion of mathematical tasks, they 

attended to one another as players and leaners, they remained on task for nearly the 

entire gameplay session, and they showed moments of passionate involvement.   

 

Additionally, several participants showed performance gains from a pretest 

to a posttest, game pairs showed greater independence in terms of gameplay and 

performance of mathematics tasks as the games progressed, and they showed gains 

in efficiency by playing faster, and earning more points each turn.  Since the earning 

of points maps exactly to performance of mathematics tasks, the gain in points per 

minute indicates that participants were either completing more mathematics tasks 

in the same time, or harder mathematics tasks.   

 

The alpha gamer (Sabastian) in the second session appeared to have an 

outsized impact on the learning environment and other players by consuming 

resources (facilitator time).  His repeated efforts to avoid collaboration consumed 

the valuable resource of content expert facilitation, and he and his partner showed 

below average reductions in use of in-game resources overall.  Sabastian was the 

only participant from that session to show performance gains from the pretest to 

the posttest, and his partner showed the largest decrease in posttest performance, 

dropping from the top performer in the pretest to the lowest possible score in the 

posttest.  The second session’s group did not show the performance gains that were 

shown in the first session’s group, and the second session’s group showed less 
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productivity, overall, in their engagement with mathematical ideas.  It is possible 

that one alpha gamer may have negatively impacted the learning environment for 

all players.  Research into possible effects of an alpha gamer in a game-based 

learning activity on the learning environment and other learners could inform 

teachers on effective strategies for working with such a student. 

 

One possibility available to the facilitators was to rearrange the players, 

which was not done.  It is an open question of whether that would have improved 

the situation.  Another question that arises relates to the player with whom the 

alpha gamer should be paired.  Who would be a good match in that they would not 

be adversely affected by the alpha gaming behavior?  What should be done if there is 

no one with whom to pair the alpha gamer?  Could an alpha gamer situation be 

averted by establishing norms of behavior during a game-based learning activity?  

Answers to such questions could inform use of games in the classroom. 

 

During the first session, one game pair had an unfavorable draw of cards that 

slowed them down and kept them from earning points.  As the gameplay session 

ended, they voiced their frustration with that outcome.  In some game-based 

learning activities, this kind of frustration could hinder learning for some students, 

since they might internalize the unfavorable draw as reflecting something negative 

about their mathematical abilities.  In this case, it did not appear to have significant 
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negative effects on the pair’s learning as both players showed performance gains 

from pretest to posttest.   

 

It is possible that design choices could be made to reduce the likelihood of 

unfavorable draws, but the event highlights an interesting dilemma for the 

facilitator (or teacher).  One possibility was that the facilitators could have over-

ridden the rules to “cheat” by discarding one of the cards causing the most trouble, 

in order to make the game move more quickly for those players (give them more 

opportunities to do mathematical tasks) and relieve their frustration (make the 

gameplay experience more enjoyable).  However, this action could have led to 

undesirable consequences in that players might take liberties in removing from play 

those cards they think are too hard.  This could include players from other games 

that saw the event transpire, and then possibly spread throughout the classroom.  

Investigations into the conditions under which such dilemmas arise might be a 

fruitful area of inquiry for game-based learning, in order to inform the design and 

implementation of multiplayer tabletop mathematics learning games.   

 

All of this seems to point to the important role that a teacher might play 

during the deployment of a game-based learning activity in the classroom, for all 

students to realize the learning benefits.  Establishing, managing, and enforcing 

appropriate behavioral norms for player-to-player and player-to-teacher 

interactions during a game-based learning activity seem critically important.  As 
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noted earlier, the implementation of the game Assembly Lines during the research 

sessions followed the first four of Renne’s implementation principles (Renne, 2019, 

Chapter 2), but deliberately did not include a teacher-moderated debrief.  It is 

possible that a debrief session could have led to greater performance gains and 

deeper mathematical connections.  These results may lend support to the commonly 

held belief that a debriefing session following a game-based learning activity is 

essential (e.g., Garris, Ahlers, & Driskell, 2002; Nicholson, 2012; Westera, 2015; 

Wouters, Van Nimwegen, Van Oostendorp, & Van Der Spek, 2013).   
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CHAPTER 5: DISCUSSION 

 

Much of the work in the arena of game-based learning in mathematics has 

focused on digital games, usually intended to be played by a single individual.  In his 

book Mathematics Education for a New Era: Video Games as a Medium for Learning 

(2011), Devlin describes effective design practices for digital mathematics learning 

games, which contributed to the design of what is, perhaps, the most notable effort 

to date in video game design for mathematics learning, WuzzitTM Trouble.  Devlin’s 

work was heavily influenced by the 36 learning principles embodied in video games 

proposed by James Paul Gee (2003).   

 

Video learning games offer the important affordances of automatic 

adjudication (enforcement of game rules) and feedback (progress toward game 

goals) to the player.  Indeed, many of the design challenges in creating a successful 

digital learning game concern how best to provide this adjudication and feedback in 

ways that both enhance the player’s mathematics learning and sustain the 

individual’s interest and engagement in playing the game.  

 

In contrast, the format of a multiplayer tabletop game (non-digital, such as a 

board game or a card game) lacks these features of automatic adjudication and 

feedback.  Such games must rely on either the players themselves (or another 

person acting as a referee) to adjudicate play within the rules as well as to evaluate 
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each player’s progress toward game goals.  However, multiplayer tabletop games 

can also involve many player-to-player interactions that are absent in the single 

player video game scenario.  These player-to-player interactions afford valuable 

opportunities to promote productive mathematical discourse around the players’ 

engagement with mathematical ideas arising in the game.  Taking full advantage of 

those opportunities suggests not only different challenges for multiplayer tabletop 

game designers, but also has implications for the teacher’s role in supporting 

student engagement in mathematical activity and discourse.   

 

The work described in this dissertation on the design and use of multiplayer 

tabletop mathematics learning games is intended to be an effort that is 

complementary to the work on single-player digital mathematics learning games 

done by Devlin and others.  Both the different limitations and the unique 

affordances presented by the multiplayer tabletop game format pose special 

challenges for the design of mathematics learning games of this type.  Moreover, 

recognizing the special role the teacher could play in facilitating student discourse 

around mathematical ideas, there is an additional need for guidance for effective 

implementation of such a game as a learning activity.  Faced with similar concerns, 

Dick and Burrill (2016) offered principles for both design and implementation of 

dynamic interactive mathematics learning technologies.  Their approach motivated 

our presentation of both a set of design principles to guide the creation of 

multiplayer tabletop mathematics learning games, and a set of implementation 
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principles to aid teachers effectively leverage such games as classroom learning 

activities.   

 

The three-paper dissertation model structure appeared to be particularly 

appropriate for this work.  Chapter 2 is a “principles” paper that provides a 

theoretical framing for, and describes in detail, both a set of design principles and a 

set of implementation principles for multiplayer tabletop mathematics learning 

games.  Chapter 3 is a “design experiment” paper that documents the use of the 

design principles in the creation and iterative refinement of the function 

representations card game Curves Ahead! and reports on an investigation of its 

perceived gameplay-value.  Chapter 4 is a “gameplay interaction analysis” paper that 

reports on an analysis of video-recorded game sessions involving the calculus board 

game Assembly Lines and considers the degree to which the players were 

productively engaged in mathematical activity.  These sessions were conducted 

following the proposed implementation principles, and the analysis of player 

interactions suggested implications for teachers facilitating gameplay as a learning 

activity.   

 

Implications of the design and implementation principles paper (Chapter 2) 

 

The construct of productive disciplinary engagement (Engle & Conant, 2002) 

provided a very useful theoretical framing for both the design principles and the 
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implementation principles for multiplayer tabletop mathematics learning games.  

Teachers are generally attracted to the idea of game-based learning by the allure of 

increased “engagement” of students, but exactly what that notion means to the 

teacher may be left vague.  Engle and Conant’s framework puts a clear and sharp 

focus on the kind of student engagement to aim for in a learning game: productive 

disciplinary engagement.  While this framework has primarily been used in the 

analysis of student discourse (e.g., Engle & Conant, 2002), it appears to be entirely 

relevant to the consideration of a broader set of player interactions while playing a 

learning game.  Indeed, this dissertation would suggest that: 

creating sustained opportunities for, and facilitation of, 
productive disciplinary engagement in mathematics should be the 
central aim of both the development and deployment of a 
mathematics learning game. 
 

Engle and Conant’s framework also provides useful evidentiary indicators of 

productive disciplinary engagement that can be readily applied in analyzing 

gameplay interactions.   

 

Importance of situating the mathematics 

  

The design principle that most distinguishes a mathematics learning game 

from gamification (the superficial introduction of game elements to an essentially 

non-game learning activity) is the  

Embedding Principle: Each mathematical task in a math learning 
game should be embedded in a way that elicits the formulation of 
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a mathematical problem statement by the player, without the 
need to overtly indicate the task to the player.   
 

Essential to adhering to this principle is establishing a meaningful mapping of the 

basic game mechanics to mathematical tasks involving sense making and reasoning, 

and not complicated computations.   

 

Leveraging a challenge-defense mechanism for productive mathematical discourse 

 

In a tabletop game, the players themselves will often be involved in 

adjudicating player actions.  This adjudication process could include a game 

mechanic where one player can formally challenge another player’s action as 

invalid, and the challenged player can formally respond with a defense of the 

validity of that action.  If the game mechanics have situated mathematical meaning 

for the player actions, then one player’s challenge may be viewed as essentially a 

critique of the mathematical reasoning of another player, whose defense is a counter 

argument.  This player-to-player discourse exchange involves both participants in 

the mathematical practice of critiquing the reasoning of another.   

 

Subjective gameplay-value – a useful construct for student motivation 

 

The success of a mathematics learning game will be judged not only on the 

productive mathematical engagement of its players, but also on the motivation or 

interest students have to play the game.  The expectancy-value theory of 
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achievement motivation was a useful lens through which player interest could be 

considered, which yielded the construct of subjective gameplay-value.  This 

construct takes into account multiple reasons behind a player’s interest in a 

mathematics learning game, including valuing the game for sheer enjoyment or for 

the expected learning outcomes.   

 

In short, the set of design principles presented in Chapter 2 is intended to 

help designers create a multiplayer tabletop mathematics learning game in a way 

that fosters productive disciplinary engagement, situates mathematics within the 

pretended reality of a game, conveys progress toward goals to the player(s), and 

positions the game so that players have interest in playing.   

 

The postgame debrief as an essential teacher-led discussion 

 

The set of implementation principles was proposed to help teachers make 

effective use of multiplayer tabletop games as mathematics learning activities in the 

classroom.  The guidance positions the teacher as a facilitator of productive 

disciplinary engagement in mathematics and of meaningful mathematical discourse 

before, during, and after the game.  The implementation principles are influenced 

by, and deliberately invite comparison to, Stein et al.’s (2008) five practices for 

orchestrating productive mathematics discussions.   
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Special attention to the postgame debrief discussion is warranted.  Even if 

game designers have done a spectacular job of situating mathematical activity into 

the game’s structure and students are productively engaged in mathematics 

throughout the gameplay, the debrief discussion gives the teacher a critical 

opportunity to make sure that important mathematical ideas arising during the 

gameplay are surfaced for all students.   

 

Discussion of the function representations card game Curves Ahead! (Chapter 
3) 

 
 

The function representations card game Curves Ahead! was created using the 

design principles proposed in Chapter 2.  Further refinements and improvements 

were made by using playtests in a design experiment to determine which features 

were impacting productive disciplinary engagement and/or subjective gameplay 

value.  The first playtest allowed members of the community of mathematics 

educators to provide input for important design changes.  The second playtest took 

feedback from a small number of calculus students to gain further insight into the 

potential of Curves Ahead! to support productive engagement with mathematical 

ideas and maintain player interest for the duration of the game.  The results from 

the first two playtests allowed for an advanced prototype to be tested with an entire 

class of differential calculus students.  The results from the third and final playtest 

support the design decisions that were made following the first two playtests and 

suggested that students perceived Curves Ahead! as offering them learning value.   
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The results were encouraging enough to suggest that the proposed design 

principles employed using a design experiment methodology could be effectively 

used to iteratively develop a multiplayer tabletop mathematics learning game that 

supports productive disciplinary engagement in mathematics having subjective 

gameplay-value for learners.   

 

Discussion of the calculus board game Assembly Lines (Chapter 4)   

 

The calculus board game Assembly Lines was also created using the design 

principles proposed in Chapter 2.  This game includes the embedded mathematics 

tasks of graphically interpreting derivatives, antiderivatives, and the Fundamental 

Theorem of Calculus, and can be played cooperatively or competitively, and single-

player or multiplayer.  Assembly Lines was playtested in video-recorded gameplay 

sessions that followed most of the implementation principles proposed in Chapter 2 

(there was not moderated debrief session following the gameplay).  Using the 

construct of productive disciplinary engagement and its attendant evidentiary 

indicators suggested by Engle and Conant (2002), the videos were carefully 

analyzed for the verbal and nonverbal communication that students used during the 

gameplay to determine whether the students were productively engaging with 

mathematical ideas.  Performance measures were obtained by using a pretest and 

posttest to determine if any learning might be attributable to the gameplay session.   
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While performance gains were slight, all participants demonstrated that they 

were engaged in mathematical reasoning and sense making for all but a few 

moments of the gameplay.  In addition, most participants showed “intellectual 

progress” by becoming more independent of the reference sheet and facilitators, as 

well as performing more (or harder) mathematics tasks in the same amount of game 

time.   

 

The results from Chapter 4 were also promising in that they suggested the 

design and implementation principles proposed in Chapter 2 could be effectively 

utilized to create and deploy a multiplayer tabletop calculus game.  Performance 

gains from a pretest to a posttest were modest, but the study also deliberately chose 

not to include a moderated postgame debrief.  It is quite possible that a teacher-led 

discussion following gameplay could have significantly helped students make 

mathematical connections that would contribute to greater performance gains.  It 

may well be that the facilitated debriefing session is of critical importance in the 

successful implementation of a game-based learning activity.  

 

The impact of the behavior of an alpha gamer may have had a particularly 

negative impact on his partner’s performance, and possibly even other players in his 

gameplay session.  The importance of attention to interpersonal dynamics between 

students working cooperatively is not new, but the phenomenon of alpha gamer 
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behavior may warrant special consideration in the implementation of game-based 

learning activities.  For example, it is conceivable that the behavior demonstrated by 

the alpha gamer might not have manifested itself so dramatically if the students 

were working together in a cooperative, but non-game, learning activity.   

 

A design process for multiplayer tabletop mathematics learning games 

 

Devlin (2011) suggests that while learning principles like those proposed by 

Gee (2003) for learning from video games can be helpful for design, there is no 

“how-to” manual for developing a successful video mathematics learning game.  

That said, Devlin does provide detailed descriptions of how to apply Gee’s learning 

principles in developing a digital mathematics learning game.   

 

The case of multiplayer tabletop mathematics learning game design is 

similar.  It is hoped that the design principles proposed here will be found helpful to 

other learning game creators, but neither is there a “how-to” manual for this kind of 

mathematics learning game.  The following description of a general design process 

is offered as an accompaniment to the design principles presented in Chapter 2, and 

to provide more depth to the process described in Chapter 3.   

 

Game-based learning researchers suggest that designers begin with the 

desired learning outcomes and formulate the essential mathematical tasks with 
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which players are to engage (e.g., Stanford, Wiburg, Chamberlin, Trujillo, & Parra, 

2016; Weitze, 2014).  Next, using the embedding principle and rules principle, embed 

those tasks within the pretended reality and form rules, respectively.  Then, devise a 

feedback system that will convey actual or potential progress to the player (e.g., an 

adjudication process and a points system).  Lastly, consider those features of the 

mathematics learning game that are intended to enhance the subjective gameplay-

value.   

Table 20 lists each game aspect, their related design principles, and how the 

design principles support productive disciplinary engagement in mathematics.   

 

Table 20: Alignment of design principles with game aspects and productive 
disciplinary engagement. 

Game Aspect Design Principle 
Supported Principles of Productive 
Disciplinary Engagement 

Goals Mathematical Fidelity Principle 
Cognitive Fidelity Principle 

Resources 
Resources 

Pretended Reality 
with Rules 

Embedding Principle 
Rules Principle 

Problematization 
Accountability 

Feedback System Adjudication Principle 
Rewards & Risks Principle 
Discovery & Reflection Principle 

Resources, Authority, & Accountability 
Resources & Accountability 
Resources & Authority 

Enhancing the 
Subjective 
Gameplay-Value 

Variety Principle 
The Virtuous Cycle Principle 
Flow (or Immersion) Principle 

Authority 
Authority 
Authority 

 

Game design typically relies on an iterative process (Adams, 2010; Fullerton, 

2008; Salen & Zimmerman, 2004).  Early prototypes of a game can be playtested 

after the first two “steps” and into the beginning stages of the third (Vanden Abeele 
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et al., 2011).  That is, the goals, the pretended reality with rules, and some of the 

feedback system, are all that is necessary to begin playtesting.   

 

Directions for future design and research: digital versus tabletop mathematics 
learning games 

 
 

Muller (2008) argues that there is no reason to believe that any one type of 

multimedia is better for learning.  Perhaps, each type of learning game can offer a 

different learning experience that supports different learning goals.   

 

Single-player video and multiplayer tabletop games present different 

limitations and affordances.  Much of the game-based learning design research and 

work to date has focused on digital learning games, and this dissertation work was 

presented in an effort to complement that work with attention to a game format that 

has special affordances for player-to-player interactions.   

 

Adjudication in a digital game is fast, automatic, and (usually) error-free.  

However, adjudication in a digital game is usually passive in that players do not 

generally participate in the judgements.  A digital game is unlikely to admit player 

participation during adjudication in a way that facilitates productive disciplinary 

engagement or meaningful mathematical discourse.  
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This suggests some lines for future design and research.  Given similar basic 

game mechanics, how is the mathematical engagement of the player qualitatively 

different between the two game formats?  For example, the function-representation-

translation-via-card-matching mechanic of Curves Ahead! or the graph building 

mechanic under constraint(s) in Assembly Lines both lend themselves to the creation 

of digital game versions of those games.  These new games would have the 

advantage of automatic adjudication and feedback, but without the player-to-player 

interactions.  An investigation comparing the experiences of learners in both 

formats, where the essential game mechanics are identical, would be a natural line 

of inquiry.   

 

If each of the two formats are found to provide distinct advantages, then this 

leads to interesting design challenges.  For example, are there ways of combining 

the affordances offered by both formats by creating a multiplayer video game that 

allows significant opportunities for player-to-player interactions and discourse in 

ways that do not disrupt the flow of the game?   

 

Finally, there has been little attention paid to implementation principles for 

single-player digital learning games.  There is no real occasion for the teacher to 

moderate discourse during truly individual gameplay, but an implementation where 

students work in pairs or small cooperative groups to play a digital learning game as 

an “individual” might offer an opportunity for productive interactions between 
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players.  Even in the case of truly individual gameplay, would implementation of a 

teacher-facilitated whole-class pregame brief and postgame debrief session before 

and after individual gameplay yield significantly positive results in meeting the 

learning outcomes envisioned by the game designers?  

 

Simply “turning students loose” to play either a digital or tabletop learning 

game with the expectation that any learning is simply a product of the game is likely 

squandering precious opportunities of the teacher to leverage the game as a focus of 

productive mathematical discourse.  Evaluating the “(learning-)value added” by 

discussion before, during, and following gameplay could serve to illustrate its 

importance and reveal impactful implementation strategies.   

 

Concluding remarks and a look to the future 

 

While it is possible that different types of multimedia do not have inherent 

advantages in terms of learning effects (Muller, 2008), the present discussion has 

made a case that different learning game formats do indeed offer distinct 

opportunities that suggest the need for different design principles and 

implementation guidelines to optimize their effectiveness.  It seems that both digital 

mathematics learning games and tabletop mathematics learning games have 

genuine promise as vehicles for engaging students in productive mathematical 

activity, and the teacher has an important role in realizing that promise. 
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The interest in game-based learning is following a growth curve that has yet 

to reach its inflection point.  Game-based learning research has much to offer in 

advancing our collective wisdom regarding design of mathematics learning games 

and the effective implementation of these games in the classroom.  It is hoped that 

the work presented here has contributed in some way to that collective wisdom.   
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Appendix A: Glossary 

 
ability beliefs (in expectancy-value theory): one’s beliefs about one’s competence in 
performing a task 
 
accountability (in productive disciplinary engagement): responsiveness to content, 
practices, and disciplinary norms established in a community of learners 
 
alpha gamer: a player that seeks to control the behaviors and actions of other 
players, especially during cooperative gameplay 
 
attainment value (in expectancy-value theory): personal importance of succeeding at 
a task or activity 
 
authority (in productive disciplinary engagement): to be able to define, address, and 
resolve problems for oneself 
 
cost (in expectancy-value theory): negative results and trade-offs from performing a 
task or activity 
 
digital game: a game played on an electronic computation device, such as a console, 
computer, or mobile device 
 
educational (mathematics) game: a game designed to support attainment of 
specified learning outcomes (in mathematics) 
 
expectancy-value theory: a theory of achievement motivation that attempts to 
explain an individual’s willingness and motivation to perform a task using the 
individual’s beliefs about the potential for success and its personal value 
 
exploit: a way to circumvent the intended routes to achieve given game goal(s) 
 
flow: a subjective psychological state which occurs when an individual is so 
thoroughly focused or immersed in an activity that their sense of time and space 
becomes distorted, the activity is perceived as being inherently rewarding, and the 
individual perceives a sense of agency in that they become confident that they can 
handle whatever challenges may arise in the activity 
 
game: a voluntary play activity in a pretended reality governed by rules, wherein 
participant(s) try to achieve one or more goals, and where degrees of success in the 
attainment of goals are conveyed by a feedback system  
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game-based learning: a pedagogical strategy that uses gameplay as a means for 
attaining desired learning outcomes 
 
game interaction: a player-player or player-game interaction (incl. game mechanic) 
 
game mechanic: a structured action in the pretended reality of a game that can occur 
between players, between the player(s) and the game, or internally to the game 
 
game world: the players, the pretended reality, the rules, the goals, and the feedback 
system of a game 
 
grok: to thoroughly comprehend every aspect of a game, suggesting a deeper 
structural understanding of the game 
 
intrinsic value (in expectancy-value theory): personal enjoyment gained from doing a 
task or activity 
 
learning game: see educational game 
 
outcome expectancy (in expectancy-value theory): one’s beliefs as to the likely 
outcome of performing a task 
 
playtest: a designer-observed gameplay session, along with possible follow-up 
interviews or surveys of the players, for the purposes of evaluating the structure of 
the game and/or the perceptions of the players to the game 
 
problematize (in productive disciplinary engagement): to define a problem that elicits 
one’s curiosity and sense-making skills 
 
productive disciplinary engagement: intellectual progress during or through a 
focused and active participation in an activity, while maintaining contact between 
what students are doing and the issues, practices, or discourse in a discipline 
 
serious game: a game designed for some purpose other than purely entertainment 
 
subjective gameplay-value: perceived value of playing a game, explained through 
applying expectancy-value theory to a game-based learning activity 
 
tabletop game: a game typically played on, or requiring the use of, a flat surface 
 
utility value (in expectancy-value theory): usefulness of a task or activity in attaining 
personal goals 
 
video game: see digital game  
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Appendix B: Gee’s 36 learning principles 

 These principles are quoted from Gee (2003): 

1. Active, Critical Learning Principle  

All aspects of the learning environment (including the ways 

in which the semiotic domain is designed and presented) are 

set up to encourage active and critical, not passive, learning. 

2. Design Principle  

Learning about and coming to appreciate design and design 

principles is core to the learning experience.   

3. Semiotic Principle  

Learning about and coming to appreciate interrelations 

within and across multiple sign systems (images, words, 

actions, symbols, artifacts, etc.) as a complex system is core 

to the learning experience.   

4. Semiotic Domain Principle  

Learning involves mastering, at some level, semiotic 

domains, and being able to participate, at some level, in the 

affinity group or groups connected to them.   

5. Metalevel Thinking about Semiotic Domains Principle  

Learning involves active and critical thinking about the 

relationships of the semiotic domain being learned to other 

semiotic domains. 

6. “Psychosocial Moratorium” Principle 

Learners can take risks in a space where real-world 

consequences are lowered. 

7. Committed Learning Principle  

Learners participate in an extended engagement (lots of 

effort and practice) as extensions of their real-world 

identities in relation to a virtual identity to which they feel 

some commitment and a virtual world that they find 

compelling.   

8. Identity Principle  

Learning involves taking on and playing with identities in 

such a way that the learner has real choices (in developing 

the virtual identity) and ample opportunity to meditate on 

the relationship between new identities and old ones.  There 

is a tripartite play of identities as learners relate, and reflect 
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on, their multiple real-world identities, a virtual identity, and 

a projective identity. 

9. Self-Knowledge Principle  

The virtual world is constructed in such a way that learners 

learn not only about the domain but about themselves and 

their current and potential capacities.  

10. Amplification of Input Principle  

For a little input, learners get a lot of output. 

11. Achievement Principle  

For learners of all levels of skill there are intrinsic rewards 

from the beginning, customized to each learner’s level, effort, 

and growing mastery and signaling the learner’s ongoing 

achievements.   

12. Practice Principle  

Learners get lots and lots of practice in a context where the 

practice is not boring (i.e., in a virtual world that is 

compelling to learners on their own terms and where the 

learners experience ongoing success).  They spend lots of 

time on task. 

13. Ongoing Learning Principle 

The distinction between learner and master is vague, since 

learners, thanks to the operation of the “regime of 

competence” principle listed next, must, at higher and higher 

levels, undo their routinized master to adapt to new or 

changed conditions.  There are cycles of new learning, 

automatization, undoing automatization, and new 

reorganized automatization.   

14. “Regime of Competence” Principle  

The learner gets ample opportunity to operate within, but at 

the outer edge of, his or her resources, so that at those points 

things are felt as challenging but not “undoable.” 

15. Probing Principle  

Learning is a cycle of probing the world (doing something); 

reflecting in and on this action and, on this basis, forming a 

hypothesis; reprobing the world to test this hypothesis; and 

then accepting or rethinking the hypothesis. 

16. Multiple Routes Principle  

There are multiple ways to make progress or move ahead.  
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This allows learners to make choices, rely on their own 

strengths and styles of learning and problem solving, while 

also exploring alternative styles. 

17. Situated Meaning Principle  

The meanings of signs (words, actions, objects, artifacts, 

symbols, text, etc.) are situated in embodied experience.  

Meanings are not general or decontextualized.  Whatever 

generality meanings come to have is discovered bottom up 

via embodied experiences.   

18. Text Principle  

Texts are not understood purely verbally (i.e., only in terms 

of the definitions of the words in the text and their text-

internal relationships to each other) but are understood in 

terms of embodied experiences.  Learners move back and 

forth between texts and embodied experiences.  More purely 

verbal understanding (reading texts apart from embodied 

action) comes only when learners have had enough 

embodied experience in the domain and ample experiences 

with similar texts.   

19. Intertextual Principle  

The learner understands texts as a family (“genre”) of related 

texts and understands any one such text in relation to others 

in the family, but only after having achieved embodied 

understandings of some texts.  Understanding a group of 

texts as a family (genre) of texts is a large part of what helps 

the learner make sense of such texts.   

20. Multimodal Principle  

Meaning and knowledge are built up through various 

modalities (images, texts, symbols, interactions, abstract 

design, sound, etc.), not just words. 

21. “Material Intelligence” Principle  

Thinking, problem solving, and knowledge are “stored” in 

material objects and the environment.  This frees learners to 

engage their minds with other things while combining the 

results of their own thinking with the knowledge stored in 

material objects and the environment to achieve yet more 

powerful effects. 
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22. Intuitive Knowledge Principle  

Intuitive or tacit knowledge built up in repeated practice and 

experience, often in association with an affinity group, 

counts a great deal and is honored.  Not just verbal and 

conscious knowledge is rewarded.   

23. Subset Principle  

Learning even at its start takes place in a (simplified) subset 

of the real domain.   

24. Incremental Principle  

Learning situations are ordered in the early stages so that 

earlier cases lead to generalizations that are fruitful for later 

cases.  When learners face more complex cases later, the 

learning space (the number and type of guesses the learner 

can make) is constrained by the sorts of fruitful patterns or 

generalizations the learner has found earlier. 

25. Concentrated Sample Principle  

The learner sees, especially early on, many more instances of 

fundamental signs and actions then would be the case in a 

less controlled sample.  Fundamental signs and actions are 

concentrated in the early stages so that learners get to 

practice them often and learn them well.   

26. Bottom-up Basic Skills Principle  

Basic skills are not learned in isolation or out of context; 

rather, what counts as a basic skill is discovered bottom up 

by engaging in more and more of the game/domain or 

game/domains like it.  Basic skills are genre elements of a 

given type of game/domain.   

27. Explicit Information On-Demand and Just-in-Time 

Principle  

The learner is given explicit information both on-demand 

and just-in-time, when the learner needs it or just at the 

point where the information can best be understood and 

used in practice.  

28. Discovery Principle  

Overt telling is kept to a well-thought-out minimum, 

allowing ample opportunity for the learner to experiment 

and make discoveries.   



256 

 

 

29. Transfer Principle  

Learners are given ample opportunity to practice, and 

support for, transferring what they have learned earlier to 

later problems, including problems that require adapting 

and transforming that earlier learning.   

30. Cultural Models about the World Principle  

Learning is set up in such a way that learners come to think 

consciously and reflectively about some of their cultural 

models regarding the world, without denigration of their 

identities, abilities, or social affiliations, and juxtapose them 

to new models that may conflict with or otherwise relate to 

them in various ways.   

31. Cultural Models about Learning Principle  

Learning is set up in such a way that learners come to think 

consciously and reflectively about their cultural models of 

learning and themselves as learners, without denigration of 

their identities, abilities, or social affiliations, and juxtapose 

them to new models of learning and themselves as learners. 

32. Cultural Models about Semiotic Domains Principle  

Learning is set up in such a way that learners come to think 

consciously and reflectively about their cultural models 

about a particular semiotic domain they are learning, 

without denigration of their identities, abilities, or social 

affiliations, and juxtapose them to new models about this 

domain.   

33. Distributed Principle  

Meaning/knowledge is distributed across the learner, 

objects, tools, symbols, technologies, and the environment. 

34. Dispersed Principle  

Meaning/knowledge is dispersed in the sense that the 

learner shares it with others outside the domain/game, some 

of whom the learner may rarely or never see face-to-face. 

35. Affinity Group Principle  

Learners constitute an “affinity group,” that is, a group that is 

bonded primarily through shared endeavors, goals, and 

practices and not shared race, gender, nation, ethnicity, or 

culture.   



257 

 

 

36. Insider Principle  

The learner is an “insider,” “teacher,” and “producer” (not 

just a “consumer”) able to customize the learning experience 

and domain/game from the beginning and throughout the 

experience. 

(p. 207-212)  
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Appendix C: A summary of the design and implementation principles for 
multiplayer tabletop mathematics learning games 
 
Design principles for multiplayer tabletop mathematics learning games: 
 

• Mathematical Fidelity Principle: A mathematics learning game 
should be faithful to the mathematics, being free of errors, 
ambiguities, and sloppiness. 
 

• Cognitive Fidelity Principle: A mathematics learning game should be 
faithful to the mathematics as perceived by a player. 
 

• Embedding Principle: Each mathematical task in a mathematics 
learning game should be embedded in a way that elicits the 
formulation of a mathematical problem statement by the player, 
without the need to overtly indicate the task to the player.   
 

• Rules Principle: The rules of a mathematics learning game should be 
simple, clearly stated, consistent, and perceived as fair by the players.  
 

• Adjudication Principle: A mathematics learning game should 
provide error-free, simple, and fair judgment of player actions. 
 

• Reward System Principle: Every mathematical task in a 
mathematics learning game should have a reward associated with its 
successful performance and a minimal cost associated with its 
unsuccessful performance.   
 

• Discovery & Reflection Principle: Feedback provided by a 
mathematics learning game should stimulate discovery and reflection, 
and it should not be provided through overt telling. 
 

• Variety Principle: A mathematics learning game should provide 
many opportunities for its players to learn through engagement with 
important mathematical ideas that contribute to the attainment of the 
intended learning outcomes. 
 

• The Virtuous Cycle Principle: A mathematics learning game should 
give a player meaningful control to make consequential choices that 
brings their creativity to bear.  Success should yield more (or different 
kinds of) meaningful control.   
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• Flow Principle: A mathematics learning game should immerse each 
player in a flow experience that sustains the player’s engagement in 
game-based mathematical activities throughout the duration of the 
game. 

 
 
Implementation principles for multiplayer tabletop mathematics learning games: 
 

• Timing Principle: Teachers should use a math learning game at a 
time appropriate to student development and curricular goals. 
 

• Planning Principle: Teachers should plan the implementation of a 
math learning game in terms of what the learners will need in order to 
successfully play the game and attain the learning outcomes. 
 

• Briefing Principle: Teachers should prepare students for a math 
learning game by establishing behavioral norms and explaining the 
game and its relevance. 
 

• Managing Gameplay Principle: Teachers should monitor a math 
learning game activity and its player interactions.  The teacher should 
clarify rules and assist with adjudication as needed and facilitate the 
mathematical discourse when asked for help.   
 

• Debrief Principle: The teacher should follow a math learning game 
activity with a moderated debriefing session to help students make 
connections between the game and the learning outcomes.   
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Appendix D: Questionnaire for third playtest of Curves Ahead! 

Note that the formatting here is slightly different from the original. 
 
 
Please answer each question to the best of your ability.  To improve the quality of 
educational games, your honest opinion is of utmost importance.  This is anonymous 
and will not be viewed until after the term is completed. 
 
Circle the answer that fits your experience the best. 

1. How difficult was it to learn how to play the game (independent of the 
mathematics)? 
 
   Too easy  Just right  Too hard 
 

2. How difficult was the math? 
 
   Too easy  Just right  Too hard 
 

3. Did the experience feel like a game or more like a dressed-up math 
activity? 
 
  Felt like a game Felt like a dressed-up  Unsure 
            math activity   
 

4. Do you feel like you learned mathematics as a result of the 
experience?   
 
  Not at all  A little          Some      A lot  Unsure 
 

5. Do you feel that the experience strengthened existing mathematical 
understanding? 
 
  Not at all  A little          Some      A lot  Unsure 
   

6. To learn the mathematics presented in the game, would you rather 
play this game, work on a typical worksheet activity, attend lecture, or 
do something else entirely? 
 
  This was best   Typical activity is best  
 
 Lecture is best     Other (what?)  
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7. How has your confidence regarding the mathematical material 
changed? 
      Lower confidence  No change      Higher confidence 
 

8. Ideally, how many times should this game be played in a term? 
 
   0   1  2  3  4 or more 
 

9. Ideally, where would you rather play this game? 
 
  In class  Outside of class Both   Unsure 
 

10. How likely would you be to request that we play this game in class 
again? 
 
     Not at all likely  Somewhat likely  Highly likely      Unsure 
 

11. How likely would you be to recommend that others play this game in 
future classes? 
 
     Not at all likely  Somewhat likely  Highly likely      Unsure 
 

12. How did you feel about the game overall?  
 
         It was no fun at all.     It was a little fun.    It was fun.  
 
  It was so much fun that I’d play this game in my free time with  
  my friends. 
 
  It was only fun when compared to my typical experiences in a   
  math class.   
 
  Other (please specify):  
 

13. What could make the experience feel more like a game, and/or make 
it more fun?   
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Appendix E: Background questionnaire for gameplay sessions of Assembly 
Lines 
 
Participant Survey: 
Participant Information:  
Instructions:  Please answer the following questions to the best of your ability.   
 

1. What is your name?  
2. What is your gender? 
3. What is your age? 
4. Have you ever taken the Calculus AP® exam (not for practice)?  

a. If so, in what year?   
b. Was the exam AB or BC?  

5. Have you ever learned about anti-derivatives, integrals, and the 
Fundamental Theorem of Calculus before your math class this term? 

a. If so, how long has it been since you did this kind of mathematics? 
6. How often do you play games? (number of times per week and/or 

duration) 
 
Game Goal Orientation 
 
Instructions: The following statements represent types of goals that you may or may 
not have when playing games. Circle a number to indicate how true each statement 
is of you. All of your responses will be kept anonymous and confidential. There are 
no right or wrong responses, so please be open and honest. 
 

1. To beat the game  
2. To win on a challenging difficulty level  
3. To overcome many challenges  
4. Avoid being defeated by the game  
5. Avoid losing on a challenging difficulty level  
6. Avoid failing challenges 
7. To play better than I have in the past  
8. To play well relative to how I have in the past  
9. To play better than I typically do  
10. Avoid playing worse than I normally do  
11. Avoid playing poorly compared to my typical performance  
12. Avoid playing worse than I have in the past  
13. To outperform other players  
14. To play well compared to other players  
15. To do better than other players  
16. Avoid underperforming relative to other players  
17. Avoid playing poorly compared to other players  
18. Avoid doing worse than other players  
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Goal Orientation for the Math Class 
 
Instructions: The following statements represent types of goals that you may or may 
not have for your math class. Circle a number to indicate how true each statement is 
of you. All of your responses will be kept anonymous and confidential. There are no 
right or wrong responses, so please be open and honest. 
 

1. To get a lot of questions right on the exams in my math class.  
2. To know the right answers to the questions on the exams in my math 

class.  
3. To answer a lot of questions correctly on the exams in my math class. 
4. To avoid incorrect answers on the exams in my math class.  
5. To avoid getting a lot of questions wrong on the exams in my math class.  
6. To avoid missing a lot of questions on the exams in my math class. 
7. To perform better on the exams in my math class than I have done in the 

past on these types of exams.  
8. To do well on the exams in my math class relative to how well I have done 

in the past on such exams.  
9. To do better on the exams in my math class than I typically do in this type 

of situation. 
10. To avoid doing worse on the exams in my math class than I normally do 

on these types of exams.  
11. To avoid performing poorly on the exams in my math class compared to 

my typical level of performance.  
12. To avoid doing worse on the exams in my math class than I have done on 

prior exams of this type. 
13. To outperform other students on the exams in my math class. 
14. To do well compared to others in my math class on the exams.  
15. To do better than my classmates on the exams in my math class. 
16. To avoid doing worse than other students on the exams in my math class.  
17. To avoid doing poorly in comparison to others on the exams in my math 

class.  
18. To avoid performing poorly relative to my fellow students on the exams 

in my math class. 
 
Note that all goal orientation items included the following scale for responses: 

1 2 3 4 5 6 7 

not 
true of me 

slightly 
true of me 

moderately 
true of me 

very 
true of me 

extremely 
true of me 
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Appendix F: AP® Exam Questions and Grading Standards 

 

Figure 10: 2004 AP® exam question 5 and its grading standards. 
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Figure 11: 2012 AP® exam question 3 and its grading standards. 
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Appendix G: Assembly Lines Reference Sheet 

 

You are graphing 𝑓, which is the derivative of 𝐹.  That is,    𝐹′ = 𝑓. 

 

 

Which gives a useful relationship:      𝐹(𝑏) − 𝐹(𝑎) = ∫ 𝑓(𝑡)
𝑏

𝑎
𝑑𝑡 

 

 

A useful shortcut: This game has been specially designed so that the net 

area between 𝑓 and the horizontal axis under a single line segment is the 

sum of the 𝒚-values at the endpoints of that line segment.  Caution: For 

more than one segment, do this shortcut for each line segment, then add the 

results. 

 

This game has also been designed to allow the use of geometry to calculate 

areas. 

 

 

The numbers on the line segments are the change in 𝒚 from the last played 

𝑦-value, over a run of 2.  (ALWAYS a run of 2.) 

 

 

𝐹(𝑐) is a local minimum if 𝐹′(𝑐) = 0 and 𝐹′ is negative nearby and to the 

left of 𝑐, and 𝐹′ is positive nearby and to the right of 𝑐 (i.e., 𝐹′(𝑐−) < 0 and 

𝐹′(𝑐+) > 0). 
 

𝐹(𝑐) is a local maximum if 𝐹′(𝑐) = 0 and 𝐹′ is positive nearby and to the 

left of 𝑐, and 𝐹′ is negative nearby and to the right of 𝑐 (i.e., 𝐹′(𝑐−) > 0 and 

𝐹′(𝑐+) < 0). 

 

 

𝐹(𝑐) is an inflection point if 𝐹′′ nearby and to the left of 𝑐 has the opposite 

sign of 𝐹′′ nearby and to the right of 𝑐 (i.e., 𝐹′′(𝑐−) and 𝐹′′(𝑐+) have 

opposite sign). 

 

For 𝐹′′(𝑐) to exist, it must be that 𝐹′ is smooth (no corners) near 𝑐.  Or, for 

this game, we can say, 𝐹′′(𝑐−) = 𝐹′′(𝑐+)  


