66 research outputs found

    Acute myeloid leukemia arising from a donor derived premalignant hematopoietic clone: A possible mechanism for the origin of leukemia in donor cells

    Get PDF
    AbstractDuring recent years, it has become increasingly evident that donor leukemia following allogeneic transplant may be more common then realized in the past. We identified five cases of potential donor leukemia cases during past five years. The precise mechanism of the origin of such leukemias, however, remains poorly defined. In this short communication, we report a well documented case of donor-derived de novo acute myeloid leukemia (AML) that developed fourteen years after allogeneic stem cell transplantation for treatment induced AML for his primary malignancy Immunoblastic lymphoma. This case allows us to postulate a possible mechanism of the origin of donor leukemia. The de novo AML clone contained a distinct cytogenetic abnormality, trisomy 11, which was simultaneously detected in preserved peripheral blood obtained at the time of transplantation as well as in the current bone marrow from an otherwise clinically and phenotypically normal donor. The findings from this unique case, provides insight into the process of leukemogenesis, and suggests that the sequence of events leading to leukemogenesis in this patient involved the senescence/apoptosis of normal donor hematopoietic cells due to telomere shortening resulting in the selective proliferation and transformation of this clone with MLL (mixed-lineage leukemia) gene amplification

    Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System.

    Get PDF
    Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy

    In vivo imaging enables high resolution preclinical trials on patients' leukemia cells growing in mice.

    Get PDF
    Xenograft mouse models represent helpful tools for preclinical studies on human tumors. For modeling the complexity of the human disease, primary tumor cells are by far superior to established cell lines. As qualified exemplary model, patients' acute lymphoblastic leukemia cells reliably engraft in mice inducing orthotopic disseminated leukemia closely resembling the disease in men. Unfortunately, disease monitoring of acute lymphoblastic leukemia in mice is hampered by lack of a suitable readout parameter

    The Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of acute leukemia.

    Get PDF
    Acute leukemia is a constellation of rapidly progressing diseases that affect a wide range of patients regardless of age or gender. Traditional treatment options for patients with acute leukemia include chemotherapy and hematopoietic cell transplantation. The advent of cancer immunotherapy has had a significant impact on acute leukemia treatment. Novel immunotherapeutic agents including antibody-drug conjugates, bispecific T cell engagers, and chimeric antigen receptor T cell therapies have efficacy and have recently been approved by the US Food and Drug Administration (FDA) for the treatment of patients with acute leukemia. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop a clinical practice guideline composed of consensus recommendations on immunotherapy for the treatment of acute lymphoblastic leukemia and acute myeloid leukemia
    • …
    corecore