7 research outputs found

    CNS inflammatory demyelinating events after COVID-19 vaccines: A case series and systematic review

    Get PDF
    BackgroundVaccinations provided the most effective tool to fight the SARS-CoV-2 pandemic. It is now well established that COVID-19 vaccines are safe for the general population; however, some cases of rare adverse events following immunization have been described, including CNS Inflammatory Demyelinating Events (CIDEs). Although observational studies are showing that these events are rare and vaccines' benefits highly outweigh the risks, collecting and characterizing post-COVID-19 vaccine CIDEs might be relevant to single out potential risk factors and suggest possible underlying mechanisms. MethodsHere we describe six CIDEs, including two acute transverse myelitis (ATM), three multiple sclerosis (MS), and one neuromyelitis optica spectrum disorder (NMOSD), occurring between 8 and 35 days from a COVID-19 vaccine. Moreover, we performed a systematic literature search of post-COVID-19 vaccines CIDEs, including ATM, ADEM, MS, and NMOSD/MOGAD, published worldwide between December 2020 and December 2021, during 1 year of the vaccination campaign. Clinical/MRI and CSF/serum characteristics were extracted from reviewed studies and pooled-analyzed. ResultsForty-nine studies were included in the systematic review, reporting a total amount of 85 CIDEs. Considering our additional six cases, 91 CIDEs were summarized, including 24 ATM, 11 ADEM, 47 MS, and nine NMOSD/MOGAD. Overall, CIDEs occurred after both mRNA (n = 46), adenoviral-vectored (n = 37), and inactivated vaccines (n = 8). Adenoviral-vectored vaccines accounted for the majority of ADEM (55%) and NMOSD/MOGAD (56%), while mRNA vaccines were more frequent in MS new diagnoses (87%) and relapses (56%). Age was heterogeneous (19-88) and the female sex was prevalent. Time from vaccine to symptoms onset was notably variable: ADEM and NMOSD/MOGAD had a longer median time of onset (12.5 and 10 days) compared to ATM and MS (6 and 7 days) and further timing differences were observed between events following different vaccine types, with ATM and MS after mRNA-vaccines occurring earlier than those following adenoviral-vectored ones. ConclusionBoth the prevalence of vaccine types for certain CIDEs and the heterogeneity in time of onset suggest that different mechanisms-with distinct dynamic/kinetic-might underly these events. While epidemiological studies have assessed the safety of COVID-19 vaccines, descriptions and pooled analyses of sporadic cases may still be valuable to gain insights into CIDE's pathophysiology

    GWAS-associated Variants, Non-genetic Factors, and Transient Transcriptome in Multiple Sclerosis Etiopathogenesis: a Colocalization Analysis [preprint]

    Get PDF
    A clinically actionable understanding of multiple sclerosis (MS) etiology goes through GWAS interpretation, prompting research on new gene regulatory models. Our previous works on these topics suggested a stochastic etiologic model where small-scale random perturbations could eventually reach a threshold for MS onset and progression. A new sequencing technology has mapped the transient transcriptome (TT), including intergenic RNAs, and antisense intronic RNAs. Through a rigorous colocalization analysis, here we show that genomic regions coding for the TT were significantly enriched for both MS-associated GWAS variants, and DNA binding sites for molecular transducers mediating putative, non-genetic, etiopathogenetic factors for MS (e.g., vitamin D deficiency, Epstein Barr virus latent infection, B cell dysfunction). These results suggest a model whereby TT-coding regions are hotspots of convergence between genetic ad non-genetic factors of risk/protection for MS (and plausibly for other complex disorders). Our colocalization analysis also provides a freely available data resource at www.mscoloc.com for future research on transcriptional regulation in MS

    When the Benefit is Unexpected: Improvement in Nystagmus During Cannabinoid Treatmen

    No full text
    A 40-year-old Italian man was diagnosed with multiple sclerosis through symptoms of weakness in the lower limbs, nystagmus and oscillopsia confirmed by neurological assessment. Vision disturbances progressively worsened, becoming disabling for the patient. No proven treatment was effective. However, when the patient started therapy with delta-9-tetrahydrocannabinol/cannabidiol (nabiximols), he noticed a significant improvement in nystagmus, as well as in spasticity

    Viruses and neuroinflammation in multiple sclerosis

    No full text
    In multiple sclerosis (MS), a relationship with viral infection has long been recognized, starting from clinical evidence of an association between infectious events and disease onset or relapse. Herpesviridae and human endogenous retroviruses (HERVs) are among the most studied viral families in MS. These exposures share the characteristic of being latent persisting infections with hidden or dormant phases that allow them to escape immune detection and reactivate upon exposure to several stimuli. Moreover, their preferential tropism for cells of the central nervous system (CNS) and immune system accounts for their plausible pathogenic role in neuroinflammation. Compartmentalized and persisting chronic inflammation within the CNS is a feature of MS, as compared with other forms of self-limiting demyelinating conditions. This has suggested the existence of a persistent agent (such as a latent virus) that sustains the pathogenic loop and determines consequent tissue damage, failure of reparative mechanisms, and accumulation of neurological deficits. This review aims to survey the literature on the relationship between viruses and MS, with special reference to the levels of complexity in the loop that can modify disease risk, namely non-genetic risk factors (including viral components) that interact with each other and with genetic variants, with possible effects on both the host and viral genome. We will also review the latest advances in therapeutic targeting virus-induced dysregulations in MS

    Intestinal Permeability and Circulating CD161+CCR6+CD8+T Cells in Patients With Relapsing–Remitting Multiple Sclerosis Treated With Dimethylfumarate

    Get PDF
    Background: The changes of the gut-brain axis have been recently recognized as important components in multiple sclerosis (MS) pathogenesis. Objectives: To evaluate the effects of DMF on intestinal barrier permeability and mucosal immune responses. Methods: We investigated intestinal permeability (IP) and circulating CD161+CCR6+CD8+T cells in 25 patients with MS, who met eligibility criteria for dimethyl-fumarate (DMF) treatment. These data, together with clinical/MRI parameters, were studied at three time-points: baseline (before therapy), after one (T1) and 9 months (T2) of treatment. Results: At baseline 16 patients (64%) showed altered IP, while 14 cases (56%) showed active MRI. During DMF therapy we found the expected decrease of disease activity at MRI compared to T0 (6/25 at T1, p = 0.035 and 3/25 at T2, p < 0.00), and a reduction in the percentage of CD161+CCR6+CD8+ T cells (16/23 at T2; p < 0.001). The effects of DMF on gut barrier alterations was variable, without a clear longitudinal pattern, while we found significant relationships between IP changes and drop of MRI activity (p = 0.04) and circulating CD161+CCr6+CD8+ T cells (p = 0.023). Conclusions: The gut barrier is frequently altered in MS, and the CD161+ CCR6+CD8+ T cell-subset shows dynamics which correlate with disease course and therapy
    corecore