208 research outputs found

    Hematological variations in healthy participants exposed 2 h to propylene glycol ethers under controlled conditions.

    Get PDF
    Glycol ethers are solvents used in a plethora of occupational and household products exposing the users to potential toxic effects. Several glycol ethers derived from ethylene glycol induce hematological toxicity, such as anemia in workers. The exposure effects on blood cells of glycol ethers derived from propylene glycol are unknown in humans. The aim of our study was to evaluate blood parameters indicative of red blood cell (RBC) hemolysis and oxidative stress in participants exposed to propylene glycol (propylene glycol monobutyl ether (PGBE) and propylene glycol monomethyl ether (PGME)), two extensively used propylene glycol derivatives worldwide. Seventeen participants were exposed 2 h in a control inhalation exposure chamber to low PGME (35 ppm) and PGBE (15 ppm) air concentrations. Blood was regularly collected before, during (15, 30, 60, and 120 min), and 60 min after exposure for RBC and oxidative stress analyses. Urine was also collected for clinical effects related to hemolysis. Under the study conditions, our results showed that the blood parameters such as RBCs, hemoglobin concentration, and white blood cells tended to increase in response to PGME and PGBE exposures. These results raise questions about the possible effects in people regularly exposed to higher concentrations, such as workers

    Parental occupational exposure to pesticides and risk of childhood cancer in Switzerland: a census-based cohort study.

    Get PDF
    Pesticide exposure is a suspected risk factor for childhood cancer. We investigated the risk of developing childhood cancer in relation to parental occupational exposure to pesticides in Switzerland for the period 1990-2015. From a nationwide census-based cohort study in Switzerland, we included children aged < 16 years at national censuses of 1990 and 2000 and followed them until 2015. We extracted parental occupations reported at the census closest to the birth year of the child and estimated exposure to pesticides using a job exposure matrix. Cox proportional hazards models, adjusted for potential confounders, were fitted for the following outcomes: any cancer, leukaemia, central nervous system tumours (CNST), lymphoma, non-CNS solid tumours. Analyses of maternal (paternal) exposure were based on approximately 15.9 (15.1) million-person years at risk and included 1891 (1808) cases of cancer, of which 532 (503) were leukaemia, 348 (337) lymphomas, 423 (399) CNST, and 588 (569) non-CNS solid tumours. The prevalence of high likelihood of exposure was 2.9% for mothers and 6.7% for fathers. No evidence of an association was found with maternal or paternal exposure for any of the outcomes, except for "non-CNS solid tumours" (High versus None; Father: adjusted HR [95%CI] =1.84 [1.31-2.58]; Mother: 1.79 [1.13-2.84]). No evidence of an association was found for main subtypes of leukaemia and lymphoma. A post-hoc analysis on frequent subtypes of "non-CNS solid tumours" showed positive associations with wide CIs for some cancers. Our study suggests an increased risk for solid tumours other than in the CNS among children whose parents were occupationally exposed to pesticides; however, the small numbers of cases limited a closer investigation of cancer subtypes. Better exposure assessment and pooled studies are needed to further explore a possible link between specific childhood cancers types and parental occupational exposure to pesticides

    Expression of the Neuroblastoma-Associated ALK-F1174L Activating Mutation During Embryogenesis Impairs the Differentiation of Neural Crest Progenitors in Sympathetic Ganglia.

    Get PDF
    Neuroblastoma (NB) is an embryonal malignancy derived from the abnormal differentiation of the sympathetic nervous system. The Anaplastic Lymphoma Kinase (ALK) gene is frequently altered in NB, through copy number alterations and activating mutations, and represents a predisposition in NB-genesis when mutated. Our previously published data suggested that ALK activating mutations may impair the differentiation potential of neural crest (NC) progenitor cells. Here, we demonstrated that the expression of the endogenous ALK gene starts at E10.5 in the developing sympathetic ganglia (SG). To decipher the impact of deregulated ALK signaling during embryogenesis on the formation and differentiation of sympathetic neuroblasts, Sox10-Cre;LSL-ALK-F1174L embryos were produced to restrict the expression of the human ALK-F1174L transgene to migrating NC cells (NCCs). First, ALK-F1174L mediated an embryonic lethality at mid-gestation and an enlargement of SG with a disorganized architecture in Sox10-Cre;LSL-ALK-F1174L embryos at E10.5 and E11.5. Second, early sympathetic differentiation was severely impaired in Sox10-Cre;LSL-ALK-F1174L embryos. Indeed, their SG displayed a marked increase in the proportion of NCCs and a decrease of sympathetic neuroblasts at both embryonic stages. Third, neuronal and noradrenergic differentiations were blocked in Sox10-Cre;LSL-ALK-F1174L SG, as a reduced proportion of Phox2b <sup>+</sup> sympathoblasts expressed βIII-tubulin and almost none were Tyrosine Hydroxylase (TH) positive. Finally, at E10.5, ALK-F1174L mediated an important increase in the proliferation of Phox2b <sup>+</sup> progenitors, affecting the transient cell cycle exit observed in normal SG at this embryonic stage. Altogether, we report for the first time that the expression of the human ALK-F1174L mutation in NCCs during embryonic development profoundly disturbs early sympathetic progenitor differentiation, in addition to increasing their proliferation, both mechanisms being potential crucial events in NB oncogenesis

    The interplay between bone and glucose metabolism

    Get PDF
    The multiple endocrine functions of bone other than those related to mineral metabolism, such as regulation of insulin sensitivity, glucose homeostasis, and energy metabolism, have recently been discovered. In vitro and murine studies investigated the impact of several molecules derived from osteoblasts and osteocytes on glucose metabolism. In addition, the effect of glucose on bone cells suggested a mutual cross-talk between bone and glucose homeostasis. In humans, these mechanisms are the pivotal determinant of the skeletal fragility associated with both type 1 and type 2 diabetes. Metabolic abnormalities associated with diabetes, such as increase in adipose tissue, reduction of lean mass, effects of hyperglycemia per se, production of the advanced glycation end products, diabetes-associated chronic kidney disease, and perturbation of the calcium-PTH-vitamin D metabolism, are the main mechanisms involved. Finally, there have been multiple reports of antidiabetic drugs affecting the skeleton, with differences among basic and clinical research data, as well as of anti-osteoporosis medication influencing glucose metabolism. This review focuses on the aspects linking glucose and bone metabolism by offering insight into the most recent evidence in humans

    Can Smaller-Scale Comprehensive Cancer Centers Provide Outstanding Care in Abdominal and Thoracic Pediatric Solid Tumor Surgery? Results of a 14-Year Retrospective Single-Center Analysis

    Get PDF
    Purpose: Quality of care and its measurement represent a considerable challenge for pediatric smaller-scale comprehensive cancer centers (pSSCC) providing surgical oncology services. It remains unclear whether center size and/or yearly case-flow numbers influence the quality of care, and therefore impact outcomes for this population of patients. Patients and Methods: We performed a 14-year, retrospective, single-center analysis, assessing adherence to treatment protocols and surgical adverse events as quality indicators in abdominal and thoracic pediatric solid tumor surgery. Results: Forty-eight patients, enrolled in a research-associated treatment protocol, underwent 51 cancer-oriented surgical procedures. All the protocols contain precise technical criteria, indications, and instructions for tumor surgery. Overall, compliance with such items was very high, with 997/1,035 items (95%) meeting protocol requirements. There was no surgical mortality. Twenty-one patients (43%) had one or more complications, for a total of 34 complications (66% of procedures). Overall, 85% of complications were grade 1 or 2 according to Clavien-Dindo classification requiring observation or minor medical treatment. Case-sample and outcome/effectiveness data were comparable to published series. Overall, our data suggest that even with the modest caseload of a pSSCC within a Swiss tertiary academic hospital, compliance with international standards can be very high, and the incidence of adverse events can be kept minimal. Conclusion: Open and objective data sharing, and discussion between pSSCCs, will ultimately benefit our patient populations. Our study is an initial step towards the enhancement of critical self-review and quality-of-care measurements in this setting

    TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth.

    Get PDF
    The embryonic transcription factors TWIST1/2 are frequently overexpressed in cancer, acting as multifunctional oncogenes. Here we investigate their role in neuroblastoma (NB), a heterogeneous childhood malignancy ranging from spontaneous regression to dismal outcomes despite multimodal therapy. We first reveal the association of TWIST1 expression with poor survival and metastasis in primary NB, while TWIST2 correlates with good prognosis. Secondly, suppression of TWIST1 by CRISPR/Cas9 results in a reduction of tumor growth and metastasis colonization in immunocompromised mice. Moreover, TWIST1 knockout tumors display a less aggressive cellular morphology and a reduced disruption of the extracellular matrix (ECM) reticulin network. Additionally, we identify a TWIST1-mediated transcriptional program associated with dismal outcome in NB and involved in the control of pathways mainly linked to the signaling, migration, adhesion, the organization of the ECM, and the tumor cells versus tumor stroma crosstalk. Taken together, our findings confirm TWIST1 as promising therapeutic target in NB

    Highly connected 3D chromatin networks established by an oncogenic fusion protein shape tumor cell identity.

    Get PDF
    Cell fate transitions observed in embryonic development involve changes in three-dimensional genomic organization that provide proper lineage specification. Whether similar events occur within tumor cells and contribute to cancer evolution remains largely unexplored. We modeled this process in the pediatric cancer Ewing sarcoma and investigated high-resolution looping and large-scale nuclear conformation changes associated with the oncogenic fusion protein EWS-FLI1. We show that chromatin interactions in tumor cells are dominated by highly connected looping hubs centered on EWS-FLI1 binding sites, which directly control the activity of linked enhancers and promoters to establish oncogenic expression programs. Conversely, EWS-FLI1 depletion led to the disassembly of these looping networks and a widespread nuclear reorganization through the establishment of new looping patterns and large-scale compartment configuration matching those observed in mesenchymal stem cells, a candidate Ewing sarcoma progenitor. Our data demonstrate that major architectural features of nuclear organization in cancer cells can depend on single oncogenes and are readily reversed to reestablish latent differentiation programs

    Generation of bivalent chromatin domains during cell fate decisions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In self-renewing, pluripotent cells, bivalent chromatin modification is thought to silence (H3K27me3) lineage control genes while 'poising' (H3K4me3) them for subsequent activation during differentiation, implying an important role for epigenetic modification in directing cell fate decisions. However, rather than representing an equivalently balanced epigenetic mark, the patterns and levels of histone modifications at bivalent genes can vary widely and the criteria for identifying this chromatin signature are poorly defined.</p> <p>Results</p> <p>Here, we initially show how chromatin status alters during lineage commitment and differentiation at a single well characterised bivalent locus. In addition we have determined how chromatin modifications at this locus change with gene expression in both ensemble and single cell analyses. We also show, on a global scale, how mRNA expression may be reflected in the ratio of H3K4me3/H3K27me3.</p> <p>Conclusions</p> <p>While truly 'poised' bivalently modified genes may exist, the original hypothesis that all bivalent genes are epigenetically premarked for subsequent expression might be oversimplistic. In fact, from the data presented in the present work, it is equally possible that many genes that appear to be bivalent in pluripotent and multipotent cells may simply be stochastically expressed at low levels in the process of multilineage priming. Although both situations could be considered to be forms of 'poising', the underlying mechanisms and the associated implications are clearly different.</p
    corecore