101 research outputs found

    Long-Term Effects of Soil Remediation with Willow Short Rotation Coppice on Biogeographic Pattern of Microbial Functional Genes

    Get PDF
    Short rotation coppice (SRC) is increasingly being adopted for bioenergy production, pollution remediation and land restoration. However, its long-term effects on soil microbial communities are poorly characterized. Here, we studied soil microbial functional genes and their biogeographic pattern under SRC with willow trees as compared to those under permanent grassland (C). GeoChip analysis showed a lower functional gene diversity in SRC than in C soil, whereas microbial ATP and respiration did not change. The SRC soil had lower relative abundances of microbial genes encoding for metal(-oid) resistance, antibiotic resistance and stress-related proteins. This indicates a more benign habitat under SRC for microbial communities after relieving heavy metal stress, consistent with the lower phytoavailability of some metals (i.e., As, Cd, Ni and Zn) and higher total organic carbon, NO3--N and P concentrations. The microbial taxa-area relationship was valid in both soils, but the space turnover rate was higher under SRC within 0.125 m(2), which was possibly linked to a more benign environment under SRC, whereas similar values were reached beyond thisarea. Overall, we concluded that SRC management can be considered as a phytotechnology that ameliorates the habitat for soil microorganisms, owing to TOC and nutrient enrichment on the long-term

    Modelling of long-term Zn, Cu, Cd and Pb dynamics from soils fertilised with organic amendments

    Get PDF
    Soil contamination by trace elements (TEs) is a major concern for sustainable land management. A potential source of excessive inputs of TEs into agricultural soils are organic amendments. Here, we used dynamic simulations carried out with the Intermediate Dynamic Model for Metals (IDMM) to describe the observed trends of topsoil Zn (zinc), Cu (copper), Pb (lead) and Cd (cadmium) concentrations in a long-term (>60-year) crop trial in Switzerland, where soil plots have been treated with different organic amendments (farmyard manure, sewage sludge and compost). The observed ethylenediaminetetraacetic acid disodium salt (EDTA)-extractable concentrations ranged between 2.6 and 27.1 mg kg−1 for Zn, 4.9 and 29.0 mg kg−1 for Cu, 6.1–26.2 mg kg−1 for Pb, and 0.08 and 0.66 mg kg−1 for Cd. Metal input rates were initially estimated based on literature data. An additional, calibrated metal flux, tentatively attributed to mineral weathering, was necessary to fit the observed data. Dissolved organic carbon fluxes were estimated using a soil organic carbon model. The model adequately reproduced the EDTA-extractable (labile) concentrations when input rates were optimised and soil lateral mixing was invoked to account for the edge effect of mechanically ploughing the trial plots. The global average root mean square error (RMSE) was 2.7, and the average bias (overestimation) was −1.66, −2.18, −4.34 and −0.05 mg kg−1 for Zn, Cu, Pb and Cd, respectively. The calibrated model was used to project the long-term metal trends in field conditions (without soil lateral mixing), under stable climate and management practices, with soil organic carbon estimated by modelling and assumed trends in soil pH. Labile metal concentrations to 2100 were largely projected to remain near constant or to decline, except for some metals in plots receiving compost. Ecotoxicological thresholds (critical limits) were predicted to be exceeded presently under sewage sludge inputs and to remain so until 2100. Ecological risks were largely not indicated in the other plots, although some minor exceedances of critical limits were projected to occur for Zn before 2100. This study advances our understanding of TEs' long-term dynamics in agricultural fields, paving the way to quantitative applications of modelling at field scales

    Information gain in environmental monitoring through bioindi-cation and biomonitoring methods ("B & B technologies") and phytoremediation processes : with special reference to the Biological System of Chemical Elements (BSCE) under specific consideration of Lithium

    Get PDF
    Different definitions for the concepts of information, information transfer, i.e. communication and its effect and efficiency of false, but also correct information, especially from the environmental sector, are given. "THE TEN ECOLOGICAL COMMANDMENTS"developed by Menke-Glückert at the end of the 1960s, the 9th commandment "Do not pollute information", in particular, is examined in more detail and understood practically as a currently unchanging law in our existing world societies. The "Ethics Consensus", derived from "THE TEN ECOLOGICAL COMMANDMENTS"and developed by Markert at the end of the 1990s, reflects both theoretical and practical levels of action that many people in our highly diverse world societies can support. From a scientific point of view, this article deals with the so-called B & B technologies, i.e. bioindication and biomonitoring of chemical elements, their chemical speciation as well as organic substances. B & B technologies, which deals with the biological detection of atmospheric deposition of chemical substances on a regional, national, and international level, are taken into account. From both an academic and a practical point of view, mosses have prevailed here in the last decades in addition to lichens. The use of mosses is a major focus of international air monitoring, especially in Europe. Furthermore, the phytoremediation of chemical substances in water, soil and air is described as a biological and sustainable biological process, which does not yet have the full scope as it is used in bioindication and biomonitoring, as shown in the example of mosses. However, the phytoremediation is considered to be an excellent tool to have the leading role in the sustainable pollutant "fight". In the future qualitative and quantitative approaches have been further developed to fit scientifically and practically B&B Technologies as well the different forms of phytotechnological approaches. Finally, the example of lithium, which is optionally derived from the Biological System of Chemical Elements (BSCE), becomes a chemical example that the administration of lithium to ALL mentally conditioned diseases such as manic depression to smoking cigarettes becomes one of the most valuable services for the recovery of human society on a global level. As a conclusion of these tremendous effects of lithium can be considered: Pulled out, to make clear that only this chemical element beside a psychiatric care and the involvement of family members, friends, physicians, psychologists and psychiatrists. In addition, it is a must that there is a strong relationship between patient, psychiatrist(s) and strongly related persons to the patient. First an intensive information transfer via communication must be guaranteed. After it, psychological support by doctors and, only if it seems necessary Lithium is to be given in a patient specific dose.RST/Applied Radiation & Isotope

    Environmental proteomics: A long march in the pedosphere

    No full text
    • …
    corecore