27 research outputs found

    Persistent organic pollutants in the Atlantic and southern oceans and oceanic atmosphere

    Get PDF
    Persistent organic pollutants (POPs) continue to cycle through the atmosphere and hydrosphere despite banned or severely restricted usages. Global scale analyses of POPs are challenging, but knowledge of the current distribution of these compounds is needed to understand the movement and long-term consequences of their global use. In the current study, air and seawater samples were collected Oct. 2007–Jan. 2008 aboard the Icebreaker Oden en route from Göteborg, Sweden to McMurdo Station, Antarctica. Both air and surface seawater samples consistently contained α-hexachlorocyclohexane (α-HCH), γ-HCH, hexachlorobenzene (HCB), α-Endosulfan, and polychlorinated biphenyls (PCBs). Sample concentrations for most POPs in air were higher in the northern hemisphere with the exception of HCB, which had high gas phase concentrations in the northern and southern latitudes and low concentrations near the equator. South Atlantic and Southern Ocean seawater had a high ratio of α-HCH to γ-HCH, indicating persisting levels from technical grade sources. The Atlantic and Southern Ocean continue to be net sinks for atmospheric α-, γ-HCH, and Endosulfan despite declining usage

    Characterising neutrophil subtypes in cancer using scRNA sequencing demonstrates the importance of IL-1β/CXCR2 axis in generation of metastasis specific neutrophils

    Get PDF
    Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand–receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1β/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1β/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states

    Enantiomer Ratios for Apportioning Two Sources Of Chiral Compounds

    No full text

    Chiral Pesticides in Soil and Water and Exchange with the Atmosphere

    No full text
    The enantiomers of chiral pesticides are often metabolised at different rates in soil and water, leading to nonracemic residues. This paper reviews enantioselective metabolism of organochlorine pesticides (OCPs) in soil and water, and the use of enantiomers to follow transport and fate processes. Residues of chiral OCPs and their metabolites are frequently nonracemic in soil, although exceptions occur in which the OCPs are racemic. In soils where enantioselective degradation and/or metabolite formation has taken place, some OCPs usually show the same degradation preference -e.g., depletion of (+)trans-chlordane (TC) and (− − − −)cischlordane (CC), and enrichment of the metabolite (+)heptachlor exo-epoxide (HEPX). The selectivity is ambivalent for other chemicals; preferential loss of either (+) or (− − − −)o,p΄-DDT and enrichment of either (+) or (− − − −)oxychlordane (OXY) occurs in different soils. Nonracemic OCPs are found in air samples collected above soil which contains nonracemic residues. The enantiomer profiles of chlordanes in ambient air suggests that most chlordane in northern Alabama air comes from racemic sources (e.g., termiticide emissions), whereas a mixture of racemic and nonracemic (volatilisation from soil) sources supplies chlordane to air in the Great Lakes region. Chlordanes and HEPX are also nonracemic in arctic air, probably the result of soil emissions from lower latitudes. The (+) enantiomer of α α α α-hexachlorocyclohexane (α α α α-HCH) is preferentially metabolised in the Arctic Ocean, arctic lakes and watersheds, the North American Great Lakes, and the Baltic Sea. In some marine regions (the Bering and Chukchi Seas, parts of the North Sea) the preference is reversed and (− − − −)α α α α-HCH is depleted. Volatilisation from seas and large lakes can be traced by the appearance of nonracemic α-HCH in the air boundary layer above the water. Estimates of microbial degradation rates for α α α α-HCH in the eastern Arctic Ocean and an arctic lake have been made from the enantiomer fractions (EFs) and mass balance in the water column. Apparent pseudo first-order rate constants in the eastern Arctic Ocean are 0.12 year -1 for Bidleman et al.: Chiral Pesticides in Soil and Water TheScientificWorldJOURNAL (2002) 2, 357-373 358 (+)α α α α-HCH, 0.030 year -1 for (− − − −)α α α α-HCH, and 0.037 year -1 for achiral γ γ γ γ-HCH. These rate constants are 3-10 times greater than those for basic hydrolysis in seawater. Microbial breakdown may compete with advective outflow for long-term removal of HCHs from the Arctic Ocean. Rate constants estimated for the arctic lake are about 3-8 times greater than those in the ocean
    corecore