1,925 research outputs found
Asymptotic behavior of global entropy solutions for nonstrictly hyperbolic systems with linear damping
In this paper we investigate the large time behavior of the global weak
entropy solutions to the symmetric Keyftiz-Kranzer system with linear damping.
It is proved that as t tends to infinite the entropy solutions tend to zero in
the L p nor
The connection between entropy and the absorption spectra of Schwarzschild black holes for light and massless scalar fields
We present heuristic arguments suggesting that if EM waves with wavelengths
somewhat larger than the Schwarzschild radius of a black hole were fully
absorbed by it, the second law of thermodynamics would be violated, under the
Bekenstein interpretation of the area of a black hole as a measure of its
entropy. Thus, entropy considerations make the well known fact that large
wavelengths are only marginally absorbed by black holes, a natural consequence
of thermodynamics. We also study numerically the ingoing radial propagation of
a scalar field wave in a Schwarzschild metric, relaxing the standard assumption
which leads to the eikonal equation, that the wave has zero spatial extent. We
find that if these waves have wavelengths larger that the Schwarzschild radius,
they are very substantially reflected, fully to numerical accuracy.
Interestingly, this critical wavelength approximately coincides with the one
derived from entropy considerations of the EM field, and is consistent with
well known limit results of scattering in the Schwarzschild metric. The
propagation speed is also calculated and seen to differ from the value , for
wavelengths larger than , in the vicinity of . As in all
classical wave phenomena, whenever the wavelength is larger or comparable to
the physical size of elements in the system, in this case changes in the
metric, the zero extent 'particle' description fails, and the wave nature
becomes apparent.Comment: 14 Pages, 4 figures. Accepted for publication in the Journal Entrop
Magnetization in AIIIBV semiconductor heterostructures with the depletion layer of manganese
The magnetic moment and magnetization in GaAs/GaInAs/GaAs
heterostructures with Mn deluted in GaAs cover layers and with atomically
controlled Mn -layer thicknesses near GaInAs-quantum well (3 nm)
in temperature range T=(1.8-300)K in magnetic field up to 50 kOe have been
investigated. The mass magnetization all of the samples of
GaAs/GaInAs/GaAs with Mn increases with the increasing of the
magnetic field that pointed out on the presence of low-dimensional
ferromagnetism in the manganese depletion layer of GaAs based structures. It
has been estimated the manganese content threshold at which the ferromagnetic
ordering was found.Comment: 8 pages, 3 figure
The State of the Circumstellar Medium Surrounding Gamma-Ray Burst Sources and its Effect on the Afterglow Appearance
We present a numerical investigation of the contribution of the presupernova
ejecta of Wolf-Rayet stars to the environment surrounding gamma-ray bursts
(GRBs), and describe how this external matter can affect the observable
afterglow characteristics. An implicit hydrodynamic calculation for massive
stellar evolution is used here to provide the inner boundary conditions for an
explicit hydrodynamical code to model the circumstellar gas dynamics. The
resulting properties of the circumstellar medium are then used to calculate the
deceleration of a relativistic, gas-dynamic jet and the corresponding afterglow
light curve produced as the shock wave propagates through the shocked-wind
medium. We find that variations in the stellar wind drive instabilities that
may produce radial filaments in the shocked-wind region. These comet-like tails
of clumps could give rise to strong temporal variations in the early afterglow
lightcurve. Afterglows may be expected to differ widely among themselves,
depending on the angular anisotropy of the jet and the properties of the
stellar progenitor; a wide diversity of behaviors may be the rule, rather than
the exception.Comment: 17 pages, 7 figures, ApJ in pres
QoSatAr: a cross-layer architecture for E2E QoS provisioning over DVB-S2 broadband satellite systems
This article presents QoSatAr, a cross-layer architecture developed to provide end-to-end quality of service (QoS) guarantees for Internet protocol (IP) traffic over the Digital Video Broadcasting-Second generation (DVB-S2) satellite systems. The architecture design is based on a cross-layer optimization between the physical layer and the network layer to provide QoS provisioning based on the bandwidth availability present in the DVB-S2 satellite channel. Our design is developed at the satellite-independent layers, being in compliance with the ETSI-BSM-QoS standards. The architecture is set up inside the gateway, it includes a Re-Queuing Mechanism (RQM) to enhance the goodput of the EF and AF traffic classes and an adaptive IP scheduler to guarantee the high-priority traffic classes taking into account the channel conditions affected by rain events. One of the most important aspect of the architecture design is that QoSatAr is able to guarantee the QoS requirements for specific traffic flows considering a single parameter: the bandwidth availability which is set at the physical layer (considering adaptive code and modulation adaptation) and sent to the network layer by means of a cross-layer optimization. The architecture has been evaluated using the NS-2 simulator. In this article, we present evaluation metrics, extensive simulations results and conclusions about the performance of the proposed QoSatAr when it is evaluated over a DVB-S2 satellite scenario. The key results show that the implementation of this architecture enables to keep control of the satellite system load while guaranteeing the QoS levels for the high-priority traffic classes even when bandwidth variations due to rain events are experienced. Moreover, using the RQM mechanism the user’s quality of experience is improved while keeping lower delay and jitter values for the high-priority traffic classes. In particular, the AF goodput is enhanced around 33% over the drop tail scheme (on average)
Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives
The optimal mechanical properties render magnesium widely used in industrial and biomedical applications. However, magnesium is highly reactive and unstable in aqueous solutions, which can be modulated to increase stability of reactive metals that include the use of alloys or by altering the surface with coatings. Plasma electrolytic oxidation is an efficient and tuneable method to apply a surface coating. By varying the plasma electrolytic oxidation parameters voltage, current density, time and (additives in the) electrolytic solution, the morphology, composition and surface energy of surface coatings are set. In the present study, we evaluated the influence on surface coatings of two solute additives, i.e. hexamethylenetetramine and mannitol, to base solutes silicate and potassium hydroxide. Results from in vitro studies in NaCl demonstrated an improvement in the corrosion resistance. In addition, coatings were obtained by a two-step anodization procedure, firstly anodizing in an electrolyte solution containing sodium fluoride and secondly in an electrolyte solution with hexamethylenetetramine and mannitol, respectively. Results showed that the first layer acts as a protective layer which improves the corrosion resistance in comparison with the samples with a single anodizing step. In conclusion, these coatings are promising candidates to be used in biomedical applications in particular because the components are non-toxic for the body and the rate of degradation of the surface coating is lower than that of pure magnesium
Assimilation in Multilingual Cities
We characterise how the assimilation patterns of minorities into the strong and the weak language differ in a situation of asymmetric bilingualism. Using large variations in language composition in Canadian cities from the 2001 and 2006 Censuses, we show that the differences in the knowledge of English by immigrant allophones (i.e. the immigrants with a mother tongue other than English and French) in English-majority cities are mainly due to sorting across cities. Instead, in French-majority cities, learning plays an important role in explaining differences in knowledge of French. In addition, the presence of large anglophone minorities deters much more the assimilation into French than the presence of francophone minorities deters the assimilation into English. Finally, we find that language distance plays a much more important role in explaining assimilation into French, and that assimilation into French is much more sensitive to individual characteristics than assimilation into English. Some of these asymmetric assimilation patterns extend to anglophone and francophone immigrants, but no evidence of learning is found in this case
- …
