192 research outputs found

    Experimental and Theoretical Investigation of Molecular Field Effects by Polarization-resolved Resonant Inelastic X-ray Scattering

    Full text link
    We present a combined theoretical and experimental study of molecular field effects on molecular core levels. Polarization-dependent resonant inelastic x-ray scattering is observed experimentally after resonant K-shell excitation of CF3Cl and HCl. We explain the linear dichroism observed in spin-orbit level intensities as due to molecular field effects, including singlet-triplet exchange, and interpret this behavior in terms of population differences in the 2px,y,z inner-shell orbitals. We investigate theoretically the different factors that can affect the electronic populations and the dynamical R dependence of the spin-orbit ratio. Finally, the results obtained are used to interpret the L-shell absorption spectra of the two molecules

    Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States

    Full text link
    Polarization-dependent resonant inelastic x-ray scattering (RIXS) is shown to be a new probe of molecular-field effects on the electronic structure of isolated molecules. A combined experimental and theoretical analysis explains the linear dichroism observed in Cl 2p RIXS following Cl 1s excitation in HCl and CF3Cl as due to molecular-field effects, including singlet-triplet exchange, indicating polarized-RIXS provides a direct probe of spin-orbit-state populations applicable to any molecule

    Angular and Dynamical Properties in Resonant Inelastic X-ray Scattering: Case Study of Chlorine-containing Molecules

    Full text link
    Polarization-dependent resonant inelastic x-ray scattering (RIXS) has been shown to be a probe of molecular-field effects on the electronic structure of isolated molecules. In this experimental analysis we explain the linear dichroism observed in Cl 2p polarized RIXS following Cl 1s excitation of a series of chlorofluoromethanes (CF3Cl, CF2Cl2, CFCl3, and CCl4) as due to molecular-field effects, including singlet-triplet exchange. We present an approach to extract directly the 2p inner-shell electronic state populations from the experimental measurements. Using the angular properties of the measured KV emission we also are able to determine the value of the polarization anisotropy parameter βp for each resolved component of the KV emission spectra

    A New Method to Derive Electronegativity from Resonant Inelastic X-ray Scattering

    Full text link
    Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p−1LUMO1 electronic states reached after Cl 1s→LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2pz atomic orbital contributing to the Cl 2p3/2 molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches

    Resonant Inelastic X-ray Scattering of Methyl Chloride at the Chlorine K Edge

    Full text link
    We present a combined experimental and theoretical study of isolated CH3Cl molecules using resonant inelastic x-ray scattering (RIXS). The high-resolution spectra allow extraction of information about nuclear dynamics in the core-excited molecule. Polarization-resolved RIXS spectra exhibit linear dichroism in the spin-orbit intensities, a result interpreted as due to chemical environment and singlet-triplet exchange in the molecular core levels. From analysis of the polarization-resolved data, Cl 2px, y and 2pz electronic populations can be determined

    Thomson-resonant Interference Effects in Elastic X-ray Scattering Near the Cl K Edge of HCl

    Full text link
    We experimentally observed interference effects in elastic x-ray scattering from gas-phase HCl in the vicinity of the Cl K edge. Comparison to theory identifies these effects as interference effects between non-resonant elastic Thomson scattering and resonant Raman scattering. The results indicate the non-resonant Thomson and resonant Raman contributions are of comparable strength. The measurements also exhibit strong polarization dependence, allowing an easy identification of the resonant and non-resonant contributions

    Femtosecond Nuclear Motion of HCl Probed by Resonant X-ray Raman Scattering in the Cl 1s Region

    Full text link
    Femtosecond dynamics are observed by resonant x-ray Raman scattering (RXS) after excitation along the dissociative Cl 1s→6ơ* resonance of gas-phase HCl. The short core-hole lifetime results in a complete breakdown of the common nondispersive behavior of soft-x-ray transitions between parallel potentials. We evidence a general phenomenon of RXS in the hard-x-ray region: a complete quenching of vibrational broadening. This opens up a unique opportunity for superhigh resolution x-ray spectroscopy beyond vibrational and lifetime limitations

    Dynamics of core-excited ammonia: disentangling fragmentation pathways by complementary spectroscopic methods

    Get PDF
    Fragmentation dynamics of core-excited isolated ammonia molecules is studied by two different and complementary experimental methods, high-resolution resonant Auger spectroscopy and electron energy-selected Auger electron–photoion coincidence spectroscopy (AEPICO). The combined use of these two techniques allows obtaining information on different dissociation patterns, in particular fragmentation before relaxation, often called ultrafast dissociation (UFD), and fragmentation after relaxation. The resonant Auger spectra contain the spectral signature of both molecular and fragment final states, and therefore can provide information on all events occurring during the core-hole lifetime, in particular fragmentation before relaxation. Coincidence measurements allow correlating Auger electrons with ionic fragments from the same molecule, and relating the ionic fragments to specific Auger final electronic states, and yield additional information on which final states are dissociative, and which ionic fragments can be produced in timescales either corresponding to the core-hole lifetime or longer. Furthermore, we show that by the combined use of two complementary experimental techniques we are able to identify more electronic states of the NH2+ fragment with respect to the single one already reported in the literature

    Photochemical Ring-Opening Reaction of 1,3-Cyclohexadiene: Identifying the True Reactive State

    Get PDF
    The photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer. Here, in a joint experimental and computational effort, we demonstrate that the evolution of the excitation–deexcitation process is much more complex than that usually described. In particular, we show that an initially high-lying electronic state smoothly decreasing in energy along the reaction path plays a key role in the ring-opening reaction
    • …
    corecore