29 research outputs found
Homogeneous isotropization and equilibration of a strongly coupled plasma with a critical point
We use holography to investigate the process of homogeneous isotropization
and thermalization in a strongly coupled Super Yang-Mills
plasma charged under a subgroup of the global R-symmetry which
features a critical point in its phase diagram. Isotropization dynamics at late
times is affected by the critical point in agreement with the behavior of the
characteristic relaxation time extracted from the analysis of the lowest
non-hydrodynamic quasinormal mode in the quintuplet (external scalar)
channel of the theory. In particular, the isotropization time may decrease or
increase as the chemical potential increases depending on whether one is far or
close enough to the critical point, respectively. On the other hand, the
thermalization time associated with the equilibration of the scalar condensate,
which happens only after the system has relaxed to a (nearly) isotropic state,
is found to always increase with chemical potential in agreement with the
characteristic relaxation time associated to the lowest non-hydrodynamic
quasinormal mode in the singlet (dilaton) channel. These conclusions
about the late dynamics of the system are robust in the sense that they hold
for different initial conditions seeding the time evolution of the
far-from-equilibrium plasma.Comment: 66 pages, 27 figures, calculation of the QNMs of the dilaton channel
added, revised conclusions. Accepted for publication in JHEP. v4: typos
corrected; v5: a few more typos correcte
Holographic calculation of the QCD crossover temperature in a magnetic field
Lattice data for the QCD equation of state and the magnetic susceptibility
computed near the crossover transition at zero magnetic field are used to
determine the input parameters of a five dimensional Einstein-Maxwell-Dilaton
holographic model. Once the model parameters are fixed at zero magnetic field,
one can use this holographic construction to study the effects of a magnetic
field on the equilibrium and transport properties of the quark-gluon plasma. In
this paper we use this model to study the dependence of the crossover
temperature with an external magnetic field. Our results for the pressure of
the plasma and the crossover temperature are in quantitative agreement with
current lattice data for values of the magnetic field
GeV, which is the relevant range for ultrarelativistic heavy ion collision
applications.Comment: 31 pages, 6 figures, version accepted for publication in Physical
Review
Polyakov loop and heavy quark entropy in strong magnetic fields from holographic black hole engineering
We investigate the temperature and magnetic field dependence of the Polyakov
loop and heavy quark entropy in a bottom-up Einstein-Maxwell-dilaton (EMD)
holographic model for the strongly coupled quark-gluon plasma (QGP) that
quantitatively matches lattice data for the -flavor QCD equation of
state at finite magnetic field and physical quark masses. We compare the
holographic EMD model results for the Polyakov loop at zero and nonzero
magnetic fields and the heavy quark entropy at vanishing magnetic field with
the latest lattice data available for these observables and find good agreement
for temperatures MeV and magnetic fields GeV.
Predictions for the behavior of the heavy quark entropy at nonzero magnetic
fields are made that could be readily tested on the lattice.Comment: 7 pages, 2 figures, version accepted for publication in Physical
Review
Hydrodynamization Time Near a Critical Point From a Holographic Bjorken Flow <sup>†</sup>
This proceedings reviews recent progress in the study of far-from-equilibrium hydrodynamization process of strongly interacting matter in the vicinity of a critical point. From a full non-linear evolution of a gravitational theory dual to a conformal strongly coupled plasma, and starting from a non-equilibrium initial state, it is verified that the time it takes for the plasma to acquire hydrodynamic behavior greatly increases near the critical point
Far-from-equilibrium properties of the strongly coupled quark-gluon plasma
A cromodinâmica quântica (QCD) é a teoria fundamental que rege as interações fortes, cujas partículas elementares são os quarks e gluons. Em termos de escala de energia, a QCD é caracterizada pela liberdade assintótica (quarks e glúons aproximadamente livres) e confinamento de cor (quarks e gluons confinados dentro de hádrons), sendo o primeiro tratado de maneira perturbativa e o último sendo um fenômeno intrinsicamente não-perturbativo. À temperatura finita, conforme se aumenta a temperatura, a matéria hadrônica sofre uma transição de fase do tipo crossover indo de um gás de hádrons ao plasma de quarks e glúons (QGP). Na vizinhança do crossover, onde os hádrons estão ``derretendo\'\' para formar o QGP, a QCD se encontra em uma região não perturbativa e portanto o QGP nessa região é fortemente acoplado, dificultando estudos analíticos. A chamada dualidade AdS/CFT, também conhecida como holografia, aparece para oferecer uma oportunidade única para o estudo do QGP ao prover um mapa entre teorias fortemente acopladas (muito difícil de serem resolvidas) e uma teoria de gravitação clássica. Na frente experimental, o estudo do QGP é feito em aceleradores de partículas colidindo íons pesados ultrarelativísticos. Nestes experimentos, o QGP criado sofre rápida expansão, com uma intrincada interação entre escalas duras e moles de energia, do estado inicial ao estado final. Tal cenário evidencia a necessidade de formular uma teoria para o QGP que inclua propriedades fora do equilíbrio. Afortunadamente, a dualidade holográfica encaixa-se bem para essa tarefa. Resolvendo-se as equações de Einstein dependentes do tempo, um problema da área da relatividade geral numérica, é possível estudar fenômenos fora do equilíbrio de plasmas fortemente acoplados. Ademais, o diagrama de fase da QCD no plano (T,mu_B), onde T é a temperatura e mu_B o potencial químico bariônico, permanece amplamente desconhecido devido a sua natureza não-perturbativa. Em particular, é conjecturada a existência de um ponto crítico delimitando o crossover de uma transição de fase de primeira ordem. Motivados por tais fatos, esta tese utiliza a dualidade holográfica para analisar o papel do ponto crítico na dinâmica fora do equilíbrio. Por exemplo, é apresentado aqui um estudo de como o ponto crítico afeta o tempo que leva para um plasma não-Abeliano fortemente acoplado adquirir comportamento hidrodinâmico partindo de um estado completamente fora do equilíbrio.Quantum Chromodynamics (QCD) is the fundamental theory that governs the strong interaction, whose fundamental particles are quarks and gluons. In terms of energy scales, QCD is characterized by asymptotic freedom (approximately free quarks and gluons) and color confinement (quarks and gluons confined inside hadrons), where the former can be treated perturbatively and the latter is an intrinsic non-perturbative phenomenon. At finite temperature, hadronic matter undergoes a crossover phase transition from a gas of hadrons to the quark-gluon plasma (QGP) as the temperature increases. Near the crossover, where hadrons ``melt\'\' to release quarks and gluons, QCD is in its non-perturbative regime and the QGP is strongly coupled, posing great challenges for analytical studies. The so-called AdS/CFT duality, also known as holography, comes to offer a unique opportunity to study the QGP by providing a map between strongly coupled theories (which are generally very hard to solve) and a classical theory of gravity. On the experimental front, the study of the QGP is carried out in particle accelerators by colliding ultrarelativistic heavy ions. In these experiments, the QGP created undergoes rapid expansion and there is a very intricate interplay between soft and hard scales, from initial conditions to final the stream of particles. This scenario makes it evident that one must understand the QGP also out of equilibrium. Fortunately, holography is well suited for this task. By solving the time dependent Einstein\'s equations, using general techniques previously employed in numerical general relativity, one can study non-equilibrium phenomena of strongly coupled plasmas. Furthermore, the QCD phase diagram on the (T,mu_B) plane, where T is the temperature and mu_B the baryon chemical potential, remains largely unknown due to its non-perturbative aspects. In particular, it is conjectured the existence of a critical point delimiting the crossover region from the first order phase transition. Motivated by these facts, this thesis employs holography to analyze the role of the critical point on far-from-equilibrium dynamics. For instance, it is investigated how the critical point affects the time that it takes for a strongly coupled plasma to display hydrodynamic behavior starting from a far-from-equilibrium initial state
