32 research outputs found
Turbulent flow of liquid lead alloy in oxygen-controlled corrosion erosion test facility
The CORELLA (CORrosion Erosion test facility for Liquid Lead Alloy) facility allows corrosion erosion tests in molten lead alloys at controlled oxygen content and temperature under flowing conditions. Its exposure chamber consists of a cylindrical container, partially filled with the liquid metal. An inner rotating cylinder drives the liquid metal flow. The specimens of interest are fixed vertically inside the chamber such that the lead alloy flows around the specimens on both sides. In this numerical study, the turbulent flow of liquid lead–bismuth eutectic is solved for various specimen configurations, filling heights, and rotational speeds of the inner cylinder. Hereby, the deformation of the free liquid surface is taken into account using a rotationally symmetric approximation. Highly turbulent flow is found even for 200 rpm (revolutions per minute), the lowest rotational speed investigated. The velocity of the liquid metal along the specimens’ lateral surfaces reaches values up to 1.5 m/s for a rotational speed of 1200 rpm, the limit of experimentally stable conditions. Due to the sudden flow constrictions and expansions around the specimens, a much higher effect of the flow on corrosion erosion is expected than for simple pipe flow at the same bulk velocity
Corrosion tests on austenitic samples with alumina and alumina-forming coatings in oxygen-containing stagnant Pb and turbulently flowing PbBi
Two differently produced alumina coatings (by pulsed laser deposition (PLD) and detonation gun (DG)) and one alumina-forming coating realised by pack cementation are proposed as a protection barrier against corrosion of austenitic steels in Pb and PbBi. Samples were tested in oxygen-controlled stagnant Pb (10 wt.%) at 480 °C and 550 °C for up to 10,000 h and in turbulently flowing (up to 1.6 m/s) PbBi eutectic at 490 °C with 10–10 wt.% oxygen for about 500 h. All exposed coatings showed a good behaviour in flowing PbBi and in stagnant Pb at around 480 °C independent of the oxygen content. At 550 °C, the PLD coating failed most probably due to incomplete coating of the sample, while the DG sample protected the base material
Influence of Si addition on the corrosion behaviour of 9 wt% Cr ferritic/martensitic steels exposed to oxygen-controlled molten Pb-Bi eutectic at 550 and 600 °C
Three 9 wt% Cr ferrite/martensite steels (two alloyed with Si) have been exposed to oxygen-controlled LBE at 550 and 600 °C, respectively. The passivating oxide scale consists of a spinel layer plus internal oxidation zone (IOZ). By adding Si, the thickness of spinel layer is decreased while the IOZ is enhanced. Moreover, a Si-rich oxide layer is observed underneath the spinel layer on Si-containing samples after 2000 h exposure at 600 °C. Besides, the less visible cracks/exfoliations on Si-containing samples indicate the positive role of Si addition on scale adherence
Solid Surface Structure Affects Liquid Order at the Polystyrene/SAM Interface
We present a combined x-ray and neutron reflectivity study characterizing the
interface between polystyrene (PS) and silanized surfaces. Motivated by the
large difference in slip velocity of PS on top of dodecyl-trichlorosilane (DTS)
and octadecyl-trichlorosilane (OTS) found in previous studies, these two
systems were chosen for the present investigation. The results reveal the
molecular conformation of PS on silanized silicon. Differences in the molecular
tilt of OTS and DTS are replicated by the adjacent phenyl rings of the PS. We
discuss our findings in terms of a potential link between the microscopic
interfacial structure and dynamic properties of polymeric liquids at
interfaces
A Fast Modular Semiconductor-Based Marx Generator for Driving Dynamic Loads
The challenging demands of pulsed electron beam devices (such as the GESA device) with respect to their pulsed power supply have led to the development of a new semiconductor-based Marx generator. At a maximum output voltage of 120 kV and 600-A pulse current for a duration of up to 100 μS, stepwise arbitrary output waveforms are desired. A fast rise time of the generator is achieved by using fast switching circuitry, low inductance capacitors, and a low inductance stage arrangement. For low jitter triggering of all stages and efficient signal transmission, the generator uses an optical bus system for communication. Due to the inherent dynamic load characteristics of the GESA device, the generator features a fast overcurrent protection scheme. This paper presents selected design aspects of the generator and their validation in a small-scale assembly able of delivering up to 8 kV at 600-A load current