13 research outputs found

    SISTEMAS DE COBERTURA MÓVILES PARA PRODUCCIÓN HORTÍCOLA Y FLORÍCOLA PARA LA AGRICULTURA FAMILIAR

    Get PDF
    La agricultura protegida permite minimizar las restricciones que el medio ambiente impone al desarrollo de las plantas, obteniendo cultivos agrícolas fuera de su ciclo natural y en menor tiempo, capaces de enfrentar con éxito plagas y enfermedades, con mejores rendimientos en un espacio reducido, sanos y con un mejor precio en los mercados. La presente tesis tiene por objeto de estudio la agricultura protegida para los pequeños productores familiares. El propósito de la investigación es brindar una solución accesible teniendo en cuenta sus limitaciones económicas. Bajo este marco surge la idea de desarrollar un set de vínculos, que combinados con materiales estándar permiten armar un macrotúnel que responda a las necesidades de la agricultura familiar

    Metrizamide dissociates nuclear particles containing heterogeneous nuclear RNA

    No full text
    Metrizamide gradients were tested for the possible fractionation of the constitutive units of nuclear particles. Material from 35-55 S monoparticles was indeed distributed along the gradient but rerun experiments, CsCl density determinations, formaldehyde fixation prior to centrifugation suggested that the separation was due to dissociation or (and) action of endogeneous ribonucleases rather than to monoparticle fractionation. That dissociation had indeed occured was confirmed by the study of 60-110 S polyparticles. They were dissociated into ribonucleoproteins rich in phosphoproteins and into free proteins. These products were essentially similar to those obtained after NaCl treatment of the particles though the modes of action of metrizamide and NaCl are likely to be different. The loss of proteins from particles reaches 60-70% and we conclude that metrizamide gradients are not utilizable for the fractionation of the units of nuclear particles

    Contrasted cis

    No full text

    The different intron 2 species excised in vivo

    No full text

    Delineation of the mechanisms of aberrant splicing caused by two unusual intronic mutations in the RSK2 gene involved in Coffin–Lowry syndrome

    No full text
    Coffin–Lowry syndrome (CLS) is caused by mutations in the RSK2 gene encoding a protein kinase of the Ras signalling pathway. We have studied two point mutations which cause aberrant splicing but do not concern the invariant GT or AG nucleotides of splice sites. The first, an A→G transition at position +3 of the 5′ splice site of exon 6, results in vivo and in vitro in exon skipping and premature translation termination. The natural 5′ splice site, although intrinsically weak, is not transactivated under normal conditions. Consequently, replacement of an A/U by a G/U base pairing with U1 snRNA reduces its strength below a critical threshold. The second mutation, an A→G transition 11 nt upstream of exon 5, creates a new AG near the natural 3′ splice site. In vitro this synthetic 3′ AG is used exclusively by the splicing machinery. In vivo this splicing event is also observed, but is underestimated because the resulting RSK2 mRNA contains premature stop codons which trigger the nonsense-mediated decay process. We show that a particular mechanism is involved in the aberrant splicing of exon 5, implying involvement of the natural 3′ AG during the first catalytic step and the new 3′ AG during the second step. Thus, our results explain how these mutations cause severe forms of CLS

    Roles of hnRNP A1, SR proteins, and p68 helicase in c-H-ras alternative splicing regulation

    No full text
    Human ras genes play central roles in coupling extracellular signals with complex intracellular networks controlling proliferation, differentiation, and apoptosis, among others processes. c-H-ras pre-mRNA can be alternatively processed into two mRNAs due to the inclusion or exclusion of the alternative exon IDX; this renders two proteins, p21H-Ras and p19H-RasIDX, which differ only at the carboxy terminus. Here, we have characterized some of the cis-acting sequences and trans-acting factors regulating IDX splicing. A downstream intronic silencer sequence (rasISS1), acting in concert with IDX, negatively regulates upstream intron splicing. This effect is mediated, at least in part, by the binding of hnRNP A1. Depletion and add-back experiments in nuclear extracts have confirmed hnRNP A1's inhibitory role in IDX splicing. Moreover, the addition of two SR proteins, SC35 and SRp40, can counteract this inhibition by strongly promoting the splicing of the upstream intron both in vivo and in vitro. Further, the RNA-dependent helicase p68 is also associated with both IDX and rasISS1 RNA, and suppression of p68 expression in HeLa cells by RNAi experiments results in a marked increase of IDX inclusion in the endogenous mRNA, suggesting a role for this protein in alternative splicing regulation.This work was supported by Fundación Ramón Areces and MCyT grants PB98-0642 and BMC2002-03282, but it was started with a grant from the Asociación Española contra el Cáncer and La Marató de TV3. This work was supported by funds from the CNRS, the INSERM, and the Association pour la Recherche sur le Cancer. S.G. was a recipient of a BEFI fellowship.Peer Reviewe

    Differential effects of the SR proteins 9G8, SC35, ASF/SF2, and SRp40 on the utilization of the A1 to A5 splicing sites of HIV-1 RNA

    No full text
    Splicing is a crucial step for human immunodeficiency virus, type 1 (HIV-1) multiplication; eight acceptor sites are used in competition to produce the vif, vpu, vpr, nef, env, tat, and rev mRNAs. The effects of SR proteins have only been investigated on a limited number of HIV-1 splicing sites by using small HIV-1 RNA pieces. To understand how SR proteins influence the use of HIV-1 splicing sites, we tested the effects of overproduction of individual SR proteins in HeLa cells on the splicing pattern of an HIV-1 RNA that contained all the splicing sites. The steady state levels of the HIV-1 mRNAs produced were quantified by reverse transcriptase-PCR. For interpretation of the data, transcripts containing one or several of the HIV-1 acceptor sites were spliced in vitro in the presence or the absence of one of the tested SR proteins. Both in vivo and in vitro, acceptor sites A2 and A3 were found to be strongly and specifically regulated by SR proteins. ASF/SF2 strongly activates site A2 and to a lesser extent site A1. As a result, upon ASF/SF2 overexpression, the vpr mRNA steady state level is specifically increased. SC35 and SRp40, but not 9G8, strongly activate site A3, and their overexpression ex vivo induces a dramatic accumulation of the tat mRNA, to the detriment of most of the other viral mRNAs. Here we showed by Western blot analysis that the Nef protein synthesis is strongly decreased by overexpression of SC35, SRp40, and ASF/SF2. Finally, activation by ASF/SF2 and 9G8 was found to be independent of the RS domain. This is the first investigation of the effects of variations of individual SR protein concentrations that is performed ex vivo on an RNA containing a complex set of splicing sites

    A Janus splicing regulatory element modulates HIV-1 tat and rev mRNA production by coordination of hnRNP A1 cooperative binding.

    No full text
    International audienceRetroviral protein production depends upon alternative splicing of the viral transcript. The HIV-1 acceptor site A7 is required for tat and rev mRNA production. Production of the Tat transcriptional activator is highly controlled because of its apoptotic properties. Two silencer elements (ESS3 and ISS) and two enhancer elements (ESE2 and ESE3/(GAA)3) were previously identified at site A7. hnRNP A1 binds ISS and ESS3 and is involved in the inhibitory process, ASF/SF2 activates site A7 utilisation. Here, by using chemical and enzymatic probes we established the 2D structure of the HIV-1(BRU) RNA region containing site A7 and identified the RNA segments protected in nuclear extract and by purified hnRNP A1. ISS, ESE3/(GAA)3 and ESS3 are located in three distinct stem-loop structures (SLS1, 2 and 3). As expected, hnRNP A1 binds sites 1, 2 and 3 of ISS and ESS3b, and oligomerises on the polypurine sequence upstream of ESS3b. In addition, we discovered an unidentified hnRNP A1 binding site (AUAGAA), that overlaps ESE3/(GAA)3. On the basis of competition experiments, hnRNP A1 has a stronger affinity for this site than for ESS3b. By insertion of (GAA)3 alone or preceded by the AUA trinucleotide in a foreign context, the AUAGAA sequence was found to modulate strongly the (GAA)3 splicing enhancer activity. Cross-linking experiments on these heterologous RNAs and the SLS2-SLS3 HIV-1 RNA region, in nuclear extract and with recombinant proteins, showed that binding of hnRNP A1 to AUA(GAA)3 strongly competes the association of ASF/SF2 with (GAA)3. In addition, disruption of AUA(GAA)3 demonstrated a key role of this sequence in hnRNP A1 cooperative binding to the ISS and ESS3b inhibitors and hnRNP A1 oligomerisation on the polypurine sequence. Thus, depending on the cellular context ([ASF/SF2]/[hnRNP A1] ratio), AUA(GAA)3 will activate or repress site A7 utilisation and can thus be considered as a Janus splicing regulator
    corecore