1,159 research outputs found

    The antitumor activity of umbelliferone in human renal cell carcinoma via regulation of the p110Îł catalytic subunit of PI3KÎł

    Get PDF
    Umbelliferone exhibits extensive pharmacological activity, including anti-immunomodulatory, anti-inflammatory and antigenotoxicity activities. However, its antitumor properties still remain unclear in human renal cell carcinoma (RCC) cells. Our results have revealed that treatment of human RCC cells (786-O, OS-RC-2, and ACHN) with umbelliferone reduced cell proliferation in a concentration-dependent manner and induced dose-dependent apoptotic events. In addition, cell cycle analysis determined that umbelliferone treatment induced cell cycle arrest in the G1 phase in a dose-dependent manner. Furthermore, western blotting analysis showed a dose-dependent decrease in Ki67, MCM2, Bcl-2, CDK2, CyclinE1, CDK4, and CyclinD1 and a dose-dependent increase in Bax in RCC cells cultured with umbelliferone. Similarly, umbelliferone exhibited a dose-dependent reduction of p110Îł when using western blotting analyses. Taken together, these results provide an insight into the pharmacology regarding the potential application of umbelliferone, which contributes to cell death by decreasing p110Îł protein expression

    Effect of temperature on microstructure and deformation mechanism of Fe-30Mn-3Si-4Al TWIP steel at strain rate of 700 s-1

    Get PDF
    As twinning-induced plasticity (TWIP) steel is one potential material for shaped charge liner due to the combination of high strength and high plasticity, deformation mechanism at high strain rate and high temperature is required to study. Compression experiments of Fe-30Mn-3Si-4Al TWIP steel were conducted using a Gleeble-1500 thermal simulation machine and a split-Hopkinson pressure bar (SHPB) between 298 and 1073 K at strain rates of 10-3 and 700 s-1, respectively. Microstructures were observed using optical microscopy (OM) and transmission electron microscopy (TEM). Results show that flow stress and densities of deformation twins and dislocations decrease with increasing deformation temperature at strain rates of 10-3 and 700 s-1. The stack fault energy (SFE) values (Γ) of Fe-30Mn-3Si-4Al TWIP steel at different temperatures were calculated using thermodynamic data. Based on corresponding microstructures, it can be inferred that at 700 s-1, twinning is the main deformation mechanism at 298-573 K for 30 mJ/m2≤Γ≤63 mJ/m, while dislocation gliding is the main deformation mechanism above 1073 K for Γ≥ 145 mJ/m2. In addition, with increasing strain rate from 10-3 to 700 s-1, the SFE range of twinning is enlarged and the SEF value of twinning becomes higher

    Cloning and characterization of a tyrosine decarboxylase involved in the biosynthesis of galanthamine in Lycoris aurea

    Get PDF
    Background Galanthamine, one kind of Amaryllidaceae alkaloid extracted from the Lycoris species, is used in the treatment of Alzheimer’s disease. In regards to medical and economic importance, the biosynthesis and regulatory mechanism of the secondary metabolites in Lycoris remain uninvestigated. Methods BLAST was used to identify the sequence of tyrosine decarboxylase in the transcriptome of Lycoris aurea (L’Hér) Herb. The enzyme activity of this TYDC was determined by using heterologous expressed protein in the Escherichia coli cells. The related productive contents of tyramine were detected using High Performance Liquid Chromatography (HPLC). According to the available micro RNA sequencing profiles and degradome database of L. aurea, microRNA396 were isolated, which targets to LaTYDC1 and RNA Ligase-Mediated-Rapid Amplification of cDNA Ends (RLM-RACE) were used to confirm the cleavage. The expression levels of miR396 and LaTYDC1 were measured using a quantitative real-time polymerase chain reaction (qRT-PCR). Results LaTYDC1 was mainly expressed in root, bulb, leaf and flower fitting the models for galanthamine accumulation. This decarboxylase efficiently catalyzes tyrosine to tyramine conversion. Under methyl jasmonate (MeJA) treatment, the expression of LaTYDC1 and the content of tyramine sharply increase. The use of RLM-RACE confirms that miR396 promotes the degradation of LaTYDC1 mRNA. Under MeJA treatment, the expression of miR396 was suppressed while the expression level of LaTYDC1 sharply increased. Following the increase of the miR396 transcriptional level, LaTYDC1 was significantly repressed. Conclusion LaTYDC1 participates in the biosynthesis of galanthamine, and is regulated by miR396. This finding also provides genetic strategy for improving the yield of galanthamine in the future

    Clinical characteristics of antithyroid drug-induced aplastic anemia cases over the past 30 years

    Get PDF
    ObjectiveThe authors aimed to investigate the clinical characteristics of antithyroid drug-induced aplastic anemia cases over the past 30 years.MethodsThe data of patients with antithyroid drug-induced aplastic anemia were retrieved from PubMed and Wanfang Medical Network databases from 1992 to August 2022. The clinical characteristics, such as age distribution, gender tendency, common symptoms, blood cell count, bone marrow features, treatment strategy, and prognosis, were analyzed.ResultsA total of 17 cases (male:female = 1:16) had been retrieved. Patients’ age ranged from 16 to 74 years (median 50 years). Among them, 82.3% (14/17) of the patients were administered methimazole (MMI), and 78.6% of them had MMI ≥30 mg/day. In addition, 88.2% (15/17) of the patients had sore throat and fever, and 47.1% (8/17) of the patients had hemorrhagic symptoms. Aplastic anemia occurred within 6 months after initiation of the antithyroid therapy in 94.1% of the patients. Agranulocytosis (94.1%) was the most common and earliest blood cell change, and 47.1% of the patients experienced progressive platelet decline during the treatment process. The treatments include timely withdrawal of antithyroid drugs, broad-spectrum antibiotics, granulocyte colony-stimulating factor (G-CSF)/granulocyte-macrophage colony-stimulating factor (GM-CSF), glucocorticoids and other immunosuppressive agents, and supportive treatments such as erythrocyte transfusion and platelet transfusion. Moreover, 70.6% of the patients had complete or near-complete remission within 8 days to 6 weeks.ConclusionAplastic anemia is a rare and serious adverse reaction of antithyroid drugs, which is more common in women. It usually occurs during early treatment with high-dose antithyroid drugs. Most patients have a good prognosis after timely drug ceasing and appropriate treatment

    BASP1 is a prognostic biomarker associated with immunotherapeutic response in head and neck squamous cell carcinoma

    Get PDF
    BackgroundsImmunotherapy is effective in a subset of head and neck squamous cell carcinoma (HNSCC). However, the unfavorable response rate and inadequate biomarkers for stratifying patients have primarily limited its clinical application. Considering transcriptional factors (TFs) play essential roles in regulating immune activity during HNSCC progression, we comprehensively analyzed the expression alterations of TFs and their prognostic values.MethodsGene expression datasets and clinical information of HNSCC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) repository. Then, Brain abundant membrane attached signal protein 1 (BASP1) was screened out of differentially expressed TFs by univariate and multivariate survival analysis. Tumor immune dysfunction and exclusion (TIDE) was applied to analyze the response to immunotherapy of BASP1high/low patients. Meanwhile, GO, KEGG and GSEA analyses were used to enrich the pathways between the BASP1high and BASP1low groups. Single-sample gene set enrichment analysis (ssGSEA), CIBERSORT, EPIC and quanTiseq algorithms were applied to explore immune infiltrations. Also, immune cycle analysis was conducted by ssGSEA. Additionally, lipid peroxidation, glutathione and reactive oxygen species were performed to detect the ferroptosis alternations.ResultsBASP1 was upregulated and associated with poor survival in HNSCC patients. BASP1high patients exhibited better response rates to anti-PD-1 immunotherapy and higher expressions of immune checkpoint inhibitors. GO, KEGG and GSEA analyses indicated that the expression of BASP1 was related to several immune-related pathways and immunogenic ferroptosis signature. The infiltration of activated CD8+ T cells was authenticated to be decreased in BASP1high patients. Furthermore, BASP1 was identified to be positively correlated with T cell dysfunction and immune escape. Moreover, silencing BASP1 triggered ferroptosis in HNSCC cells, representing as increased LDH, lipid peroxidation and ROS levels, and reduced glutathione synthesisConclusionsWe demonstrated that BASP1 suppressed immunogenic ferroptosis to induce immunosuppressive tumor microenvironment. BASP1 plays a critical role in immune response, and might be a promising classifier for selecting HNSCC patients who benefit from current immunotherapy

    Continuous and low-energy 125I seed irradiation changes DNA methyltransferases expression patterns and inhibits pancreatic cancer tumor growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iodine 125 (<sup>125</sup>I) seed irradiation is an effective treatment for unresectable pancreatic cancers. However, the radiobiological mechanisms underlying brachytherapy remain unclear. Therefore, we investigated the influence of continuous and low-energy <sup>125</sup>I irradiation on apoptosis, expression of DNA methyltransferases (DNMTs) and cell growth in pancreatic cancers.</p> <p>Materials and methods</p> <p>For <it>in vitro </it><sup>125</sup>I seed irradiation, SW-1990 cells were divided into three groups: control (0 Gy), 2 Gy, and 4 Gy. To create an animal model of pancreatic cancer, the SW 1990 cells were surgically implanted into the mouse pancreas. At 10 d post-implantation, the 30 mice with pancreatic cancer underwent <sup>125</sup>I seed implantation and were separated into three groups: 0 Gy, 2 Gy, and 4 Gy group. At 48 or 72 h after irradiation, apoptosis was detected by flow cytometry; changes in DNMTs mRNA and protein expression were assessed by real-time PCR and western blotting analysis, respectively. At 28 d after <sup>125</sup>I seed implantation, <it>in vivo </it>apoptosis was evaluated with TUNEL staining, while DNMTs protein expression was detected with immunohistochemical staining. The tumor volume was measured 0 and 28 d after <sup>125</sup>I seed implantation.</p> <p>Results</p> <p><sup>125</sup>I seed irradiation induced significant apoptosis, especially at 4 Gy. DNMT1 and DNMT3b mRNA and protein expression were substantially higher in the 2 Gy group than in the control group. Conversely, the 4 Gy cell group exhibited significantly decreased DNMT3b mRNA and protein expression relative to the control group. There were substantially more TUNEL positive in the <sup>125</sup>I seed implantation treatment group than in the control group, especially at 4 Gy. The 4 Gy seed implantation group showed weaker staining for DNMT1 and DNMT3b protein relative to the control group. Consequently, <sup>125</sup>I seed implantation inhibited cancer growth and reduced cancer volume.</p> <p>Conclusion</p> <p><sup>125</sup>I seed implantation kills pancreatic cancer cells, especially at 4 Gy. <sup>125</sup>I-induced apoptosis and changes in DNMT1 and DNMT3b expression suggest potential mechanisms underlying effective brachytherapy.</p

    Spatial transmission and meteorological determinants of tuberculosis incidence in Qinghai Province, China: a spatial clustering panel analysis

    Get PDF
    BACKGROUND: Tuberculosis (TB) is the notifiable infectious disease with the second highest incidence in the Qinghai province, a province with poor primary health care infrastructure. Understanding the spatial distribution of TB and related environmental factors is necessary for developing effective strategies to control and further eliminate TB. METHODS: Our TB incidence data and meteorological data were extracted from the China Information System of Disease Control and Prevention and statistical yearbooks, respectively. We calculated the global and local Moran's I by using spatial autocorrelation analysis to detect the spatial clustering of TB incidence each year. A spatial panel data model was applied to examine the associations of meteorological factors with TB incidence after adjustment of spatial individual effects and spatial autocorrelation. RESULTS: The Local Moran's I method detected 11 counties with a significantly high-high spatial clustering (average annual incidence: 294/100 000) and 17 counties with a significantly low-low spatial clustering (average annual incidence: 68/100 000) of TB annual incidence within the examined five-year period; the global Moran's I values ranged from 0.40 to 0.58 (all P-values < 0.05). The TB incidence was positively associated with the temperature, precipitation, and wind speed (all P-values < 0.05), which were confirmed by the spatial panel data model. Each 10 °C, 2 cm, and 1 m/s increase in temperature, precipitation, and wind speed associated with 9 % and 3 % decrements and a 7 % increment in the TB incidence, respectively. CONCLUSIONS: High TB incidence areas were mainly concentrated in south-western Qinghai, while low TB incidence areas clustered in eastern and north-western Qinghai. Areas with low temperature and precipitation and with strong wind speeds tended to have higher TB incidences

    Inactivation of Wolbachia reveals its biological roles in whitefly host

    Get PDF
    BACKGROUND: The whitefly Bemisia tabaci is cryptic species complex composed of numerous species. Individual species from the complex harbor a diversity of bacterial endosymbionts including Wolbachia. However, while Wolbachia is known to have a number of different roles, its role in B. tabaci is unclear. Here, the antibiotic rifampicin is used to selectively eliminate Wolbachia from B. tabaci so as to enable its roles in whitefly development and reproduction to be explored. The indirect effects of Wolbachia elimination on the biology of Encarsia bimaculata, a dominant parasitoid of B. tabaci in South China, were also investigated. METHODOLOGY/PRINCIPAL FINDING: qRT-PCR and FISH were used to show that after 48 h exposure to 1.0 mg/ml rifampicin, Wolbachia was completely inactivated from B. tabaci Mediterranean (MED) without any significant impact on either the primary symbiont, Portiera aleyrodidarum or any of the other secondary endosymbionts present. For B. tabaci MED, Wolbachia was shown to be associated with decreased juvenile development time, increased likelihood that nymphs completed development, increased adult life span and increased percentage of female progeny. Inactivation was associated with a significant decrease in the body size of the 4th instar which leads us to speculate as to whether Wolbachia may have a nutrient supplementation role. The reduction in nymph body size has consequences for its parasitoid, E. bimaculata. The elimination of Wolbachia lead to a marked increase in the proportion of parasitoid eggs that completed their development, but the reduced size of the whitefly host was also associated with a significant reduction in the size of the emerging parasitoid adult and this was in turn associated with a marked reduction in adult parasitoid longevity. CONCLUSIONS/SIGNIFICANCE: Wolbachia increases the fitness of the whitefly host and provides some protection against parasitization. These observations add to our understanding of the roles played by bacterial endosymbionts.This research was funded by the National Basic Research Program of China (2009CB119203), the Program for New Century Excellent Talents in University (NCET-0917–2011) and the China National Natural Science Foundation (31071732).http://www.plosone.or
    • …
    corecore