2,546 research outputs found

    Plasma gelsolin levels and outcomes after aneurysmal subarachnoid hemorrhage

    Get PDF
    INTRODUCTION: Lower gelsolin levels have been associated with the severity and poor outcome of critical illness. Nevertheless, their link with clinical outcomes of aneurysmal subarachnoid hemorrhage is unknown. Therefore, we aimed to investigate the relationship between plasma gelsolin levels and clinical outcomes in patients with aneurysmal subarachnoid hemorrhage. METHODS: A total of 262 consecutive patients and 150 healthy subjects were included. Plasma gelsolin levels were measured by enzyme-linked immunosorbent assay. Mortality and poor long-term outcome (Glasgow Outcome Scale score of 1-3) at 6 months were recorded. RESULTS: Plasma gelsolin levels on admission were substantially lower in patients than in healthy controls (66.9 (26.4) mg/L vs. 126.4 (35.4) mg/L, P < 0.001), and negatively associated with World Federation of Neurological Surgeons score (r = -0.554, P < 0.001) and Fisher score (r = -0.538, P < 0.001), and identified as an independent predictor of poor functional outcome (odds ratio, 0.957; 95% confidence interval (CI), 0.933-0.983; P = 0.001) and death (odds ratio, 0.953; 95% CI, 0.917-0.990; P = 0.003) after 6 months. The areas under the ROC curve of gelsolin for functional outcome and mortality were similar to those of World Federation of Neurological Surgeons score and Fisher score (all P > 0.05). Gelsolin improved the predictive values of World Federation of Neurological Surgeons score and Fisher score for functional outcome (both P < 0.05), but not for mortality (both P > 0.05). CONCLUSIONS: Gelsolin levels are a useful, complementary tool to predict functional outcome and mortality 6 months after aneurysmal subarachnoid hemorrhage

    Laser-Scribing Technology for Wafer-Scale Graphene Devices

    Get PDF
    Graphene has attracted a lot of attention due to its amazing properties. A huge number of novel devices, covering the electric, acoustic, photonic, magnetic and mechanical domains, can be developed with graphene. Its ultrahigh mobility can enable ultra-fast transistors or photodetectors. However, the natural zero bandgap of graphene, with insufficient on/off ratio, limits its practical applications. In this chapter, we introduce laser-scribing technology that enables wafer-scale production of graphene devices. Moreover, such laser-scribed graphene (LSG) is, infact, semi-reduced graphene oxide with a finite bandgap, which is suitable for practical applications. We show five kinds of representative LSG devices and their integration. These devices are a resistive memory, an earphone, a strain sensor, a pressure sensor and a light-emitting device. These LSG devices are high-performance, flexible and low cost, which demonstrates the practical nature of laser-scribed graphene-based materials. Finally, an outlook is presented regarding how laser scribing, a serial patterning method, may lead to similar developments in various other serial lithography techniques, such as ion beam lithography

    Graphene Acoustic Devices

    Get PDF
    In 2011, Ren’s group has developed the first graphene sound source device in the world. This is the first time that the graphene applications have been extended into acoustic area. The graphene sound source can produce sound in a wide sound frequency range from 100 Hz to 50 kHz. After that, we have innovated the first graphene earphone, which can be used both for human and animals. In 2017, both the sound detection and sound emission have been integrated into one graphene device, which is called graphene artificial throat. In this book chapter, more details for developing those graphene acoustic devices will be introduced, which can help to boost the real applications of graphene devices

    A polymorph of diaqua­bis(pyrazine-2-carboxyl­ato-κ2 N 1,O)copper(II)

    Get PDF
    The title compound, [Cu(C5H3N2O2)2(H2O)2], is a new polymorph of the previously reported compound [Klein et al. (1982 ▶). Inorg. Chem. 21, 1891–1897]. The CuII atom, lying on an inversion center, is coordinated by two N atoms and two O atoms from two pyrazine-2-carboxyl­ate ligands and by two water mol­ecules in a distorted octa­hedral geometry with the water mol­ecules occupying the axial sites. Inter­molecular O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds connect the complex mol­ecules into a two-dimensional layer parallel to (10), whereas the previously reported polymorph exhibits a three-dimensional hydrogen-bonded network

    Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph Clustering

    Full text link
    Recently there is a growing focus on graph data, and multi-view graph clustering has become a popular area of research interest. Most of the existing methods are only applicable to homophilous graphs, yet the extensive real-world graph data can hardly fulfill the homophily assumption, where the connected nodes tend to belong to the same class. Several studies have pointed out that the poor performance on heterophilous graphs is actually due to the fact that conventional graph neural networks (GNNs), which are essentially low-pass filters, discard information other than the low-frequency information on the graph. Nevertheless, on certain graphs, particularly heterophilous ones, neglecting high-frequency information and focusing solely on low-frequency information impedes the learning of node representations. To break this limitation, our motivation is to perform graph filtering that is closely related to the homophily degree of the given graph, with the aim of fully leveraging both low-frequency and high-frequency signals to learn distinguishable node embedding. In this work, we propose Adaptive Hybrid Graph Filter for Multi-View Graph Clustering (AHGFC). Specifically, a graph joint process and graph joint aggregation matrix are first designed by using the intrinsic node features and adjacency relationship, which makes the low and high-frequency signals on the graph more distinguishable. Then we design an adaptive hybrid graph filter that is related to the homophily degree, which learns the node embedding based on the graph joint aggregation matrix. After that, the node embedding of each view is weighted and fused into a consensus embedding for the downstream task. Experimental results show that our proposed model performs well on six datasets containing homophilous and heterophilous graphs.Comment: Accepted by AAAI202

    Molecular cloning and tissue expression of the fatty acid-binding protein (Es-FABP) gene in female Chinese mitten crab (Eriocheir sinensis)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fatty acid-binding proteins (FABPs), small cytosolic proteins that function in the uptake and utilization of fatty acids, have been extensively studied in higher vertebrates while invertebrates have received little attention despite similar nutritional requirements during periods of reproductive activity.</p> <p>Results</p> <p>Therefore, a cDNA encoding <it>Eriocheir sinensis </it>FABP (Es-FABP) was cloned based upon EST analysis of a hepatopancreas cDNA library. The full length cDNA was 750 bp and encoded a 131 aa polypeptide that was highly homologous to related genes reported in shrimp. The 9108 bp <it>Es-FABP </it>gene contained four exons that were interrupted by three introns, a genomic organization common among FABP multigene family members in vertebrates. Gene expression analysis, as determined by RT-PCR, revealed the presence of <it>Es-FABP </it>transcripts in hepatopancreas, hemocytes, ovary, gills, muscle, thoracic ganglia, heart, and intestine, but not stomach or eyestalk. Real-time quantitative RT-PCR analysis revealed that <it>Es-FABP </it>expression in ovary, hemocytes, and hepatopancreas was dependent on the status of ovarian development, with peak expression observed in January.</p> <p>Conclusions</p> <p>Evidence provided in the present report supports a role of Es-FABP in lipid transport during the period of rapid ovarian growth in <it>E. sinensis</it>, and indirectly confirms the participation of the hepatopancreas, ovary, and hemocytes in lipid nutrient absorption and utilization processes.</p
    corecore