36,798 research outputs found
Large enhancement of the effective second-order nonlinearity in graphene metasurfaces
Using a powerful homogenization technique, one- and two-dimensional graphene
metasurfaces are homogenized both at the fundamental frequency (FF) and second
harmonic (SH). In both cases, there is excellent agreement between the
predictions of the homogenization method and those based on rigorous numerical
solutions of Maxwell equations. The homogenization technique is then employed
to demonstrate that, owing to a double-resonant plasmon excitation mechanism
that leads to strong, simultaneous field enhancement at the FF and SH, the
effective second-order susceptibility of graphene metasurfaces can be enhanced
by more than three orders of magnitude as compared to the intrinsic
second-order susceptibility of a graphene sheet placed on the same substrate.
In addition, we explore the implications of our results on the development of
new active nanodevices that incorporate nanopatterned graphene structures.Comment: 11 pages, 12 figure
High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures
This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms
Cluster observations of the midaltitude cusp under strong northward interplanetary magnetic field
We report on a multispacecraft cusp observation lasting more than 100 min. We
determine the cusp boundary motion and reveal the effect on the cusp size of the
interplanetary magnetic field (IMF) changing from southward to northward. The cusp
shrinks at the beginning of the IMF rotation and it reexpands at the rate of 0.40°
invariant latitude per hour under stable northward IMF. On the basis of plasma signatures
inside the cusp, such as counterstreaming electrons with balanced fluxes, we propose
that pulsed dual lobe reconnection operates during the time of interest. SC1 and
SC4 observations suggest a long-term regular periodicity of the pulsed dual reconnection,
which we estimate to be ~1–5 min. Further, the distances from the spacecraft to
the reconnection site are estimated on the basis of observations from three satellites. The
distance determined using SC1 and SC4 observations is ~15 RE and that determined
from SC3 data is ~8 RE. The large-scale speed of the reconnection site sunward motion is
~16 km s-1. We observe also a fast motion of the reconnection site by SC1, which
provides new information about the transitional phase after the IMF rotation. Finally, a
statistical study of the dependency of plasma convection inside the cusp on the IMF clock
angle is performed. The relationship between the cusp stagnation, the dual lobe
reconnection process, and the IMF clock angle is discussed
Distributed Adaptive Attitude Synchronization of Multiple Spacecraft
This paper addresses the distributed attitude synchronization problem of
multiple spacecraft with unknown inertia matrices. Two distributed adaptive
controllers are proposed for the cases with and without a virtual leader to
which a time-varying reference attitude is assigned. The first controller
achieves attitude synchronization for a group of spacecraft with a leaderless
communication topology having a directed spanning tree. The second controller
guarantees that all spacecraft track the reference attitude if the virtual
leader has a directed path to all other spacecraft. Simulation examples are
presented to illustrate the effectiveness of the results.Comment: 13 pages, 11 figures. To appear in SCIENCE CHINA Technological
Science
- …