39,105 research outputs found
Microscopic interface phonon modes in structures of GaAs quantum dots embedded in AlAs shells
By means of a microscopic valence force field model, a series of novel
microscopic interface phonon modes are identified in shell quantum dots(SQDs)
composed of a GaAs quantum dot of nanoscale embedded in an AlAs shell of a few
atomic layers in thickness. In SQDs with such thin shells, the basic principle
of the continuum dielectric model and the macroscopic dielectric function are
not valid any more. The frequencies of these microscopic interface modes lie
inside the gap between the bulk GaAs band and the bulk AlAs band, contrary to
the macroscopic interface phonon modes. The average vibrational energies and
amplitudes of each atomic shell show peaks at the interface between GaAs and
AlAs. These peaks decay fast as their penetrating depths from the interface
increase.Comment: 13 pages, 4 figure
Scaling behavior of temperature-dependent thermopower in CeAu2Si2 under pressure
We report a combined study of in-plane resistivity and thermopower of the
pressure-induced heavy fermion superconductor CeAu2Si2 up to 27.8 GPa. It is
found that thermopower follows a scaling behavior in T/T* almost up to the
magnetic critical pressure pc ~ 22 GPa. By comparing with resistivity results,
we show that the magnitude and characteristic temperature dependence of
thermopower in this pressure range are governed by the Kondo coupling and
crystal-field splitting, respectively. Below pc, the superconducting transition
is preceded by a large negative thermopower minimum, suggesting a close
relationship between the two phenomena. Furthermore, thermopower of a variety
of Ce-based Kondo-lattices with different crystal structures follows the same
scaling relation up to T/T* ~ 2.Comment: 6 pages, 4 figures. Supplementary Material available on reques
Effect of disorder on the pressure-induced superconducting state of CeAu2Si2
CeAu2Si2 is a newly discovered pressure-induced heavy fermion superconductor
which shows very unusual interplay between superconductivity and magnetism
under pressure. Here we compare the results of high-pressure measurements on
single crystalline CeAu2Si2 samples with different levels of disorder. It is
found that while the magnetic properties are essentially sample independent,
superconductivity is rapidly suppressed when the residual resistivity of the
sample increases. We show that the depression of bulk Tc can be well understood
in terms of pair breaking by nonmagnetic disorder, which strongly suggests an
unconventional pairing state in pressurized CeAu2Si2. Furthermore, increasing
the level of disorder leads to the emergence of another phase transition at T*
within the magnetic phase, which might be in competition with
superconductivity.Comment: 7 pages, 7 figure
Trace functions of the Parafermion vertex operator algebras
The trace functions for the Parafermion vertex operator algebra associated to
any finite dimensional simple Lie algebra \g and any positive integer are
studied and an explicit modular transformation formula of the trace functions
is obtained.Comment: 16 pages. arXiv admin note: text overlap with arXiv:1412.815
- …