5,261 research outputs found

    Ex vivo expansion of murine MSC impairs transcription factor-induced differentiation into pancreatic β-cells

    Full text link
    © 2019 Dario Gerace et al. Combinatorial gene and cell therapy as a means of generating surrogate β-cells has been investigated for the treatment of type 1 diabetes (T1D) for a number of years with varying success. One of the limitations of current cell therapies for T1D is the inability to generate sufficient quantities of functional transplantable insulin-producing cells. Due to their impressive immunomodulatory properties, in addition to their ease of expansion and genetic modification ex vivo, mesenchymal stem cells (MSCs) are an attractive alternative source of adult stem cells for regenerative medicine. To overcome the aforementioned limitation of current therapies, we assessed the utility of ex vivo expanded bone marrow-derived murine MSCs for their persistence in immune-competent and immune-deficient animal models and their ability to differentiate into surrogate β-cells. CD45-/Ly6+ murine MSCs were isolated from the bone marrow of nonobese diabetic (NOD) mice and nucleofected to express the bioluminescent protein, Firefly luciferase (Luc2). The persistence of a subcutaneous (s.c.) transplant of Luc2-expressing MSCs was assessed in immune-competent (NOD) (n=4) and immune-deficient (NOD/Scid) (n=4) animal models of diabetes. Luc2-expressing MSCs persisted for 2 and 12 weeks, respectively, in NOD and NOD/Scid mice. Ex vivo expanded MSCs were transduced with the HMD lentiviral vector (MOI = 10) to express furin-cleavable human insulin (INS-FUR) and murine NeuroD1 and Pdx1. This was followed by the characterization of pancreatic transdifferentiation via reverse transcriptase polymerase chain reaction (RT-PCR) and static and glucose-stimulated insulin secretion (GSIS). INS-FUR-expressing MSCs were assessed for their ability to reverse diabetes after transplantation into streptozotocin- (STZ-) diabetic NOD/Scid mice (n=5). Transduced MSCs did not undergo pancreatic transdifferentiation, as determined by RT-PCR analyses, lacked glucose responsiveness, and upon transplantation did not reverse diabetes. The data suggest that ex vivo expanded MSCs lose their multipotent differentiation potential and may be more useful as gene therapy targets prior to expansion

    Pancreatic transdifferentiation and glucose-regulated production of human insulin in the H4IIE rat liver cell line

    Full text link
    © 2016 by the authors. Due to the limitations of current treatment regimes, gene therapy is a promising strategy being explored to correct blood glucose concentrations in diabetic patients. In the current study, we used a retroviral vector to deliver either the human insulin gene alone, the rat NeuroD1 gene alone, or the human insulin gene and rat NeuroD1 genes together, to the rat liver cell line, H4IIE, to determine if storage of insulin and pancreatic transdifferentiation occurred. Stable clones were selected and expanded into cell lines: H4IIEins (insulin gene alone), H4IIE/ND (NeuroD1 gene alone), and H4IIEins/ND (insulin and NeuroD1 genes). The H4IIEins cells did not store insulin; however, H4IIE/ND and H4IIEins/ND cells stored 65.5 ± 5.6 and 1475.4 ± 171.8 pmol/insulin/ 5 × 106 cells, respectively. Additionally, several β cell transcription factors and pancreatic hormones were expressed in both H4IIE/ND and H4IIEins/ND cells. Electron microscopy revealed insulin storage vesicles in the H4IIE/ND and H4IIEins/ND cell lines. Regulated secretion of insulin to glucose (0–20 mmol/L) was seen in the H4IIEins/ND cell line. The H4IIEins/ND cells were transplanted into diabetic immunoincompetent mice, resulting in normalization of blood glucose. This data shows that the expression of NeuroD1 and insulin in liver cells may be a useful strategy for inducing islet neogenesis and reversing diabetes

    Use of a Hybrid Adeno-Associated Viral Vector Transposon System to Deliver the Insulin Gene to Diabetic NOD Mice.

    Full text link
    Previously, we used a lentiviral vector to deliver furin-cleavable human insulin (INS-FUR) to the livers in several animal models of diabetes using intervallic infusion in full flow occlusion (FFO), with resultant reversal of diabetes, restoration of glucose tolerance and pancreatic transdifferentiation (PT), due to the expression of beta (β)-cell transcription factors (β-TFs). The present study aimed to determine whether we could similarly reverse diabetes in the non-obese diabetic (NOD) mouse using an adeno-associated viral vector (AAV) to deliver INS-FUR ± the β-TF Pdx1 to the livers of diabetic mice. The traditional AAV8, which provides episomal expression, and the hybrid AAV8/piggyBac that results in transgene integration were used. Diabetic mice that received AAV8-INS-FUR became hypoglycaemic with abnormal intraperitoneal glucose tolerance tests (IPGTTs). Expression of β-TFs was not detected in the livers. Reversal of diabetes was not achieved in mice that received AAV8-INS-FUR and AAV8-Pdx1 and IPGTTs were abnormal. Normoglycaemia and glucose tolerance were achieved in mice that received AAV8/piggyBac-INS-FUR/FFO. Definitive evidence of PT was not observed. This is the first in vivo study using the hybrid AAV8/piggyBac system to treat Type 1 diabetes (T1D). However, further development is required before the system can be used for gene therapy of T1D

    Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells

    Full text link
    © 2015 American Society of Gene & Cell Therapy As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes (TID). The initial liver cell line (Huh7ins) commenced secretion of insulin in response to a glucose concentration of 2.5 mmol/l. After transfection of the Huh7ins cells with human islet glucokinase, the resultant Melligen cells secreted insulin in response to glucose within the physiological range; commencing at 4.25 mmol/l. Melligen cells exhibited increased glucokinase enzymatic activity in response to physiological glucose concentrations, as compared with Huh7ins cells. When transplanted into diabetic immunoincompetent mice, Melligen cells restored normoglycemia. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that both cell lines expressed a range of β-cell transcription factors and pancreatic hormones. Exposure of Melligen and Huh7ins cells to proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) affected neither their viability nor their ability to secrete insulin to glucose. Gene expression (microarray and qRT-PCR) analyses indicated the survival of Melligen cells in the presence of known β-cell cytotoxins was associated with the expression of NF-κB and antiapoptotic genes (such as BIRC3). This study describes the successful generation of an artificial β-cell line, which, if encapsulated to avoid allograft rejection, may offer a clinically applicable cure for T1D

    Steam reforming on transition-metal carbides from density-functional theory

    Full text link
    A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.Comment: 6 pages, 4 figure

    Transmission characteristics of EM wave in a finite thickness plasma

    Get PDF
    One of the key factors for solving the problems of re-entry communication interruption is electromagnetic (EM) wave transmission characteristics in a plasma. Theoretical and experimental studies were carried out on specific transmission characteristics for different plasma sheath characteristic under thin sheath condition in re-entry state. The paper presents systematic studies on the variations of wave attenuation characteristics versus plasma sheath thickness L, collision frequency ν, electron density ne and wave working frequency f in a φ 800mm high temperature shock tube. In experiments, L is set to 4 cm and 38 cm. ν is 2 GHz and 15 GHz. ne is from 1×10^10 cm−3 to 1×10^13 cm−3, and f is set to 2, 5, 10, 14.6 GHz, respectively. Meanwhile, Wentzel–Kramers–Brillouin (WKB) and finite-difference time-domain (FDTD) methods are adopted to carry out theoretical simulation for comparison with experimental results. It is found that when L is much larger than EM wavelength λ (thick sheath) and ν is large, the theoretical result is in good agreement with experimental one, when sheath thickness L is much larger than λ, while ν is relatively small, two theoretical results are obviously different from the experimental ones. It means that the existing theoretical model can not fully describe the contribution of ν. Furthermore, when L and λ are of the same order of magnitude (thin sheath), the experimental result is much smaller than the theoretical values, which indicates that the current model can not properly describe the thin sheath effect on EM attenuation characteristics

    Cancer cells exploit an orphan RNA to drive metastatic progression.

    Get PDF
    Here we performed a systematic search to identify breast-cancer-specific small noncoding RNAs, which we have collectively termed orphan noncoding RNAs (oncRNAs). We subsequently discovered that one of these oncRNAs, which originates from the 3' end of TERC, acts as a regulator of gene expression and is a robust promoter of breast cancer metastasis. This oncRNA, which we have named T3p, exerts its prometastatic effects by acting as an inhibitor of RISC complex activity and increasing the expression of the prometastatic genes NUPR1 and PANX2. Furthermore, we have shown that oncRNAs are present in cancer-cell-derived extracellular vesicles, raising the possibility that these circulating oncRNAs may also have a role in non-cell autonomous disease pathogenesis. Additionally, these circulating oncRNAs present a novel avenue for cancer fingerprinting using liquid biopsies

    Holographic Dual of Linear Dilaton Black Hole in Einstein-Maxwell-Dilaton-Axion Gravity

    Full text link
    Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SL(2, R)L_L×\timesSL(2, R)R_R Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.Comment: 15 pages, no figure, published versio

    Controlling Cherenkov angles with resonance transition radiation

    Full text link
    Cherenkov radiation provides a valuable way to identify high energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on material's permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring Imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi GeV range, and thus are often limited to large gas chambers. It would be extremely important albeit challenging to lift this fundamental limit and control Cherenkov angles as preferred. Here we propose a new mechanism that uses constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the severe material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising option suited for identification of particles at high energy with enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary information with 18 pages and 5 figures, appended at the end of the file with the manuscript. Source files in Word format converted to PDF. Submitted to Nature Physic
    corecore